D-A286 723
WAERERRIE

EXERCISES

95-00938
LU 94 2 10 011

Saovftwars Produc ety Coraorinm

Best R
~ Available
Copy

OVERVIEW OF MEGAPROGRAMMING
COURSE: LECTURES AND EXERCISES Vs

ccesion For /

IS CRA&I

SPC-93028-CMC |7 %8,

Justificgtion

A
Dlst'ibli%’\

ailabdity\Codes

VERSION 02.00.03 —/Twii o
i pecial
FEBRUARY 1994

N AT

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION
under contract to the
VIRGINIA CENTER OF EXCELLENCE
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road
Herndon, Virginia 22070

Copyright © 1993 , 1994, Software Productivity Consortium Services Corporation, Hemdon, Virginia. Permission to use, copy,
modify, and distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and
provided that the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear
in supporting documentation. This material is based in part upon work sponsored by the Advanced Research Projects Agency under
Grant #MIDAJ72-92-3-1018. The content does not necessarily reflect the position or the policy of the U. S. Government, and no
official endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or publicity
pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium, Inc. SOFTWARE
PRODUCTIVITY CONSORTIUM, INC. AND SOFIWARE PRODUCTIVITY CONSORTTUM SERVICES
CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS
MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED
WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

REPORT DOCUMENTATION P

. Form Approved
OMB No. 07040188

Guher and miaiing he deta Readed, ard corEistng and revewing s o] e g 1 Do aiiots o oy cthe sapuct o s
obection of formaton, oksdeg for rackucing thie burden 10 Servioss, Directorae for Information Operations and Reparts, 1218 Jellarson
Devis , Suke 1204, A 222024302, 1 10 the Offics of nd Faducion 1 DG 20003,
1. AGENCY USE ONLY (Leave blank} 2 FREPORTDATE 3 REPORT TYPE AND DATES COVERED

October 1994 Technical Report - Final
4. TITLE AND SUBTILE 5. FUNDING NUMBERS

Overview of Megaprogramming Course: Teacher Notes for Overview
of Megaprogramming Course

6. AUTHOR(S) S. Wartik
Produced by Software Productivity Consortium under contract

to Virginia Center of Excellence G MDA972-92-J-1018
7. PERFORMING OFIGANIZATION NANES(S) AND ADDRESS(ES) 8. FERFORMING ORGANZATION

Virginia Center of Excellence REFORTNUMEER

SPC Building - -CM

Herndon, VA 22070 e

9. SPONSORING /
ARPA/SISTO

Suite 400

801 N. Randoiph Street
Arlington, VA 22203

7. SUPPLENENTARY NOTES g

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

This supplements DTIC # ADA 276169.
| 722, DISTRIBOTION | AVALLABEITY STATEMENT 125, DISTRIBUTION CODE

e

Approved for publia relscwg

No Restrictions

73, ABSTRAGT (Meaximun 200 words)

This is a short course that introduces megaprogramming concepts. Tne Teacher Notes for the
Overview of Megaprogramming Course complement the lecture and exercise material (ADA #
276169). They explain concepts from the lectures in more depth than is possible in the lectures' slide-
oriented format. They also discuss the relevance of megaprogramming in today's and tomorrow's
industry. They can help teachers understand the importance of the course.

1

The Teacher Notes are tied closely to the rest of the material. They draw heavily on the examples
from the lectures and laboratory, giving references to specific slides. An appendix relates each slide to
sections in the Teacher Notes. This helps instructors understand the slides as they prepare their
lectures.

-?I‘V N . L S TTTT A
st ot ——
14.SUBJECT TERMS 16. NUMBER OF PAGES
Megaprogramming, software reuse, software process, course
18. PRICE CODE
77 SECURITY CLASSFICATION | 18 SECURITY GLASGFICATION | 10, SECURITY GLASSFICATION | 20, LMITATION OF ABSTRACT |
CF REPORT OF THISPAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5600 Standard Form 208 (Rev. 2-80)

Prescribed by ANS! 8. 239-18
02

CONTENTS

TAB
Unit 1: Software Development 1
Unit 1: Software Development, Workbook 2
Unit 2: Concepts of Megaprogramming 3

Unit 2: Concepts of Megaprogramming,Workbook .. 4

Unit 3: Application Engineering 5

Unit 3: Application Engineering, Workbook 6

Unit 3: Application Engineering, Laboratory

Unit 3: Application Engineering, Laboratory (Teacher

Notes) ... 8

Unit 4: Domain Engineering 9

Unit 4: Domain Engineering, Workbook 10 -
Testand Survey ... 11 E/ -

List of Abbreviations and Acronyms 12 Sak=d

|

Avoilapiaity Codhs
hnd—vtu

lAvail and/or
st Speoial

M |

Contents

This page intentionally left blank.

funyg Bopowyay puo sno aowfos xf +7h

eImoe7 Juswdojereg a18myos ‘| yun :esmno? BujwweiBosdeBep 10 mejnen)

c jo) XT
0 ¥TINTD
pjupSiA

b @injoen ‘usidolers(e1emyoOS ' | Jun ‘esinoD BujwweiBoiduBep 10 meyuenD

)

"peLIejuI 8Q PINOYS JUBLLSSIOPUS [RISHIO OU PUB 'JUBWILIBATE) S’ 8yl j0 Adljod eyt Jo uonisod 8ys 108jj8. AlLesseosU JOU S80p JUBjU0O
oY ‘QL0L-(-Z6-ZZ6VQW # 1URID Jepun Aoueby sicsfoid yolessel peoueapy ey} Aq pesosuods yiom uodn Led Ul peseq St [Ruelew siy)

y66 1L Alenuep

9s1N09H
Buiwwesboidebapy JO MIIAIBAQD

.@Wecﬁ AMoE:ﬁuh n:c umsnm Ecéom S\

IONATIIOXT

Jo yAINTD
. &EME—

o L Bopuag pup snay Momyos 20f 2 eimoe- uswdojersq eeMyOS ‘1 YU @510 BujwwiBoiduBepy jo m [Ye)

FI, TOXT
0 HFINTD
opupsA

anbiun se uoeuigwod uonnjos/wajgosd yoes
Buiess o} pasoddo se ‘sayjebo} suonn|os pue swajqosd sejiwis e syoo| Buiwwesboidebaw jey; atels

Buiwweiboidebaw Joj uoneAow ay} urejdxy
:0} 8|qe aq pinoys sjuepnis syl
1INA JHILNT FH1 HO4 S3AIL03rgao0
‘BuiwresBoideBbaw Jnoge aseo pjnoys noA Aym puelsispun o} noA juem em ‘isii4
‘BuiwwesboideBaw sonpoul pue sidesuod Juawdojaasp alemyos [euoiiiped; urejdxs o} juem am ‘Aepol

‘abueyo o} Ajlaxjun ase buwwesboidebaw puiyaq sed
-1ound pue sidaouod Buifjiepun sy -ebueyo Aew sjrelap oyioads ay) jo awos pue Swis) 8y} Jo swos
‘Koueyul sy ut s BuwwesBosdeBaw asneoag "sieak 10} Alisnpul uiyym asn ul ussq arey Buiwweiboid
-eBaws uiym seapl fenpiaipul ydnoyye ‘ebels yoseasals ayy ui st BulwwesBoidebay 1ayoes} ayj 104

‘Buiuwelboidebaw pajes s
'$5920.d JUBWdO|oASP BIEMYOS [eUOHIPEI} B} WO JUSISYIP S Jeyl snbiuyosy e s,a1ey]

"} UM pajeloosse swajqolid pue suonepwl jo 1o} e seu juswdojaaap aremyos o} yoeosdde jeuonipest ayy,
*apoo 8y} Bunum isnf uey) alow saAjoAul JuawdolaAep asemyos

"feosed Ul sweib0id a/emyos ajlum o} Moy usea] noA se sajdiouiid aoualos Jandwod Aey Buluses) ese nop
NOISSNOsIa

RAFERERFE R EEREE LR E SRS F AR NRE LR KRR LR R ERRR R EXE R NSRRI R NR R ERE LR L E AR R RERERE LR RN NY

Juswdojanap asemyos wiopsd o} Aem Japaq e sjuapnis JNoA yoes) jjim 8sI1nod Sy
Jweiboid asemyjos e ajuM pinoys noA yuiyl NoA op MOH »
iMmou wieiboid aremyos e)M NOA Op MOH »
‘suoysanb Buimoj|o} 8y} O} SlemsuR JIaL} UMOP a)lm 0} Sjuapn}s JnoA yse ‘asinoo ay} Jo} ebels ay) 18s o}

o

eInyoe Juswdojere e1emyos ‘| WU ‘esinoy BuwweiBoidubepy jo meinierp

juswidojanag aJempyos L uun

s oo, puo osay € 01N “Juewdojereq aismyos 'L win :esino) BuwwweiBosdebepy jo ¥ 0

- T3 X \
0 NTINTD
ojupliia

pouladuoo aq pinoys Aay} yoiym inoge bBuiyiewos s) Bunuweiboidebaw jey) pueisiepun e

:0} 8|ge 8q P|NOYS Sjuapms ay|

aAILO3rgo0

;80 1l PINOM 32MYo0s J0 adA} JBUM ¢,8JeMYyos
dojanap noA djay 03 8JBM}JOS SWIOS 10} POYSIM JOND :o» aABH Ul SEm JBUM ¢Alligeded Jo abpaimouy
Buissiw awos passassod NoA § Jaisea aq pinom aremyos buidojaaap jeyl wbnouyy 19n8 NOA anBH

;mou op am Aem sy BuiwwesBoud Aq Jey; ay| diom 0} siayndwod weiboid pinoo am Muiyl noA
0@ ¢0p s191ndwo2 ayl piIp 1eym ‘(3a11 Jeis “6°8) aininy syl u) 8oe|d a)e) Jey) SMOYS AL PUB SBIAOWI U]

£9SJN09 Sy} Ul pasn aaey noA abenbue) Buiwwesboid ayy 0} ssedwoo J S0P MOH ¢Jayye Buisn
sweibosd Aue uahim nok aneH ;abenbue Aiquiassy ¢si abenbuej suiyoew jeym mouy ApogqAue saoq

‘'suonelauabd snoinaid ueyl aneq ussq
sey uonelauab Juanbasqgns yoea moy yoddns pinoys siamsue asay] ;AUM £8SI0M 10 18peq Ul Sepy
¢ SSB10 sIy) w1 Buisn are noA Jeym ueyy sayjo abenbue) e ui pawwesboid Jana aney noA jo Auew MOH

SNOILOVHILNI LN3ANLS

‘padojanap AjjeaidA; si aremyos moy jo ainoid
B61q,, 8y} puelsiapun o} pasu isiy noA ‘Buiwwelboad isnl ueyy a1ow yym sieap buiwwesboidebaw asneosg

‘s1oindwiod yum Buiajos
wajqoid Buinjoaur qol e 196 NOA j1 98s ||IM NOA JeuyM yim aul| Uy 810w s11daouod siy w ‘ssa004d Bujwweiboid e

1snlueyiayiel ‘swajqoud Buiajos pue Buiuysp jo ssadoid e se aremyos Bunessuab sass buiwwesboidebopy

‘aInjny oy} ur padofansp S| aiemyos jsow moy aq Aew siy :days Hiq Jeyjoue
si Bujwweiboidebapy “(oisegq fensip ‘preniadA ‘sieayspealds) sebenbue| uoiieiauab yunoy usy ‘(epy

pue ‘g ‘feased) 19 € xajdwod aiow usy} ‘(10900 PUB ‘NVHIHOA ‘0ISva-—s1o €) sebenbue| uoness
-uab payy ajduwuis uay; ‘abenbue| Alquiasse uay} ‘abenbue| sulyoew yum pauess buiwweiboud seindwo)

/ ZO_wwDOm_n_\

sofounyy Borougay pup snay uowgfos of ©°h ©1n}087 "Justudojeaeg eJemyos ‘i Jun :esino) BuuuweiBoideBep jo meiueno

NOHHNUNN
QQNEZNU
oA

ONINNVHOOHdVOIN A&

(s1eayspeasdsg) s1ov Aﬂ
(teased ‘O ‘epy) sTO€ pasueapy Awd
(D1SVE ‘NvdlHO4) s19¢ Ales Aﬂ

obenbue] Ajquiassy Aﬁ

abenbue auyoey

""" S0661} S0S61

juswidojanag aiemyos JO UoIIN|OA] &

N

1 RBorougag pup oy aomgos nf T H ainjoen Juswidoles(] @eMyOS ‘| HuN :8sinoy) BupuweiBoiduBey 1~ %)

=) Xd /
0 JIINTD
opuplia

(usnim si alemyos ayy
souo pua i ,usaop qol sy ‘si1eyr) asemyos syyjo asn buunp psuoddns aqg isnul Jawolsnd auj ey} slels e

(4awio)sNo 8y si Jayoesy sy}
‘Apuauno) aremyos Bunum Aq spesu s Jswoisno e Buiiesw sAeme si Jadojersp 8Jemyos ayi ey sieis

:0} 8jqe e p|noys syuspms ay |
S3AILLO3Ard0

‘s19)ndWod 818j0SCO UO URJ Jey} a/eMyos pue suoisiaAn SOA-SW Plo a1e sionpoud siem
-JJos pasnaJ jo sejdwexd jpaiel il sem AYM ¢painal usag sey jeys jonpoud asemyos e sweu noAue)

LAum ¢(seng
-owojne “B'8) sjonpo.d s1emyosuou Jejo Joj swes aY} S! aJemyos Joj 810k ey sy ey quiyinofoq

SNOILLOVHILNI IN3ANLS
ipadojersp usaq Ajjeuonipel; a/emyos sey MoH
*9SIN0Y SIY} Ul ‘'SS800.1 uswdojera(aiemyog ay} ‘dals puoosaes ay} uo Buisnoo) ale app

"siow Aue pasn JoU 810}818Y} S 8JEMYOS 8L] 8)8]0Sqo Il S8Xell Jo
Buish uaag sey JaWOoISNd sy} jeym saoejdal eyl padojansp st 81eM}JOS 8} JO UOISIaA MU & () 1o pasu
e spoddns Jabuo| ou aremyos ayy (1) esnesaq asemyjos ay} Buisn sdols JeWwoisno INoA WswWailay «

-abueyo spaau $ JaWolsno sy} se sainjes; aajep pue ‘Ajipow ‘ppe noA
‘punoy} are yeyy sBng Aue iy NoA 'WelsAs a1eMYyos 8U) SaSN JBWOISND INOA "adueusiule|y pue uojeladQ

‘wejgo.sd syl SEA|0S 1ey} WelsAs aremyos syl dojensp NoA 'Ssa00id juswdojansq a1eMyog
‘wejqoid awos SaA|0s Jey) Wis)sAs alemyos e dojansp 0} NOA SHSE JaWO0)ShO JNOA "PasN JO Juswsalels
‘ainoid siy} uo umoys sdays ay) apnjoul Ajlensn sdajs asayy

"aremyos Buioddns pue Guidojeasp ui sdals
Aoy 8yl saquosep 8joAo 8yl 81emyos v "81oAo oy e swia} Ansnpul reym Buimoljo) pesn pue }ing si 81emyos

/ zo_mw:Om_n_\

vl

eiMoen Juswdojareg 81eMyos ‘| WU 8sIno) BuluweiBoiduBep jo mejaeAD

safsupdl ABopouyol pup 35y aveos Jof
o) JOXT
0 HIINIDO
opipdia
$S320.1d
aoueuauIe N juawdojanaqg pPoaN jo
juswainay pue uonesado aJiemyos juswalels

Jadojanag
alemyos

speaN

uoddng
pue

alemyos
S

=

«

Jadojanrsg

alemyos

pasN

919/ 8j17 a1eMYy0S

juswdojonag a1empyos
Jo aunjoid Big aylL

/

1 BopownpaL pup 30y aomyfos xof o eimoeT] Juewdojereq 8IeMIOS ‘| HUM [08IN0D BujwwsiBoideben jo . AO

- T3, X3 /
0 yAINTD
opudsa

sss00.d juswdojeAsp alemyos jeuchipes e Ul sdajs Aay 8y} sulyaqQ o
:0} 8|ge 8q p|noys syuapnis ayL
JALLO3rg0

;8remyos poob dojsAsp ||is pue 8uo JWwo noAk uen ¢JapJo siy} Ul suop aq sdals syt Isn
SNOILOVHIALNI LNIANLS

‘Asnpui Jeindwiod 8y} ul pepasu s BuiwwesBosd
-eBaw AYym O} Se UoleARoW a1oW awwos nof anlb ued sm aamoid B1g,, 8y} o BWOS puelsispun noA yeyy MON

‘gsn Buunp paeuoddns pue lawojsno ayj 0} paianliap
si waysAs ay} (g) pue ‘pajsal S waisAs amue sy} (g) ‘waisAs Buiiom suo ol Joyjebo} 1} swes) Juaiayp
ay £q padojaaap spied 8y} o fje (1) :Jey} ans 8Yew 0l psau usuyy sJasuIbua 8y "(uonejuawnoop pue asem
-yyos epnjoul spied asey}) sped Jusiayip 8say} ojul pajeosed si walsAs aui moy Ajnjased ue|d o} pasu Jusw
-dojansp sy} Buibeuew sissuibus sy} ‘eseyd ubisap ayy Buung "swieay juaeytp Aq padojensp ale weishs
aI/eMYos dJ1JUa 8y} jo sHed Jualalip ‘sitey) -g joauIBua jo swies} Aq padojaaap Ajlensn s} 8Jemyos ‘Asnpu uj

-a1emyjos oy} Buuianijep s! Siy} (Ul Jiomawioy JNOA LN} NOA o

‘Bunsaey st sty :noA aaeb Jsyoes) noA wajgoid ey} seajos weiboid Jnok ains 9xews NOA
‘uoieIUBWINOOP By} pUB SPOD BUI SILIM NOA «

-uBisap sy s! siy :wayy Buowre Ayosesaly Buljeo su pue pasu noA sasnpasoid yeym Ino ainby nox e

"sjus
-aiinbaJ oyoads aiow ojul i Sjejsuel} pue pasu Jo Juswalels [e1auak s Jawoisno ay) axe} sieaulbua
‘Asnpul U] ‘sjuswelnbal s} ale 8s8Y) 1SAj0S pue pue}sispun o} swaejgoid noA sanif Jayoes) JNOA e

:ssejo w Bulop useq aA,noA BuiweiBoid sy} 0} sejerel sl
-padojanap Ajleuonipen si aremyos Aem aul st siyL
NOISSNOSIa

sofoyy, Bojouyoy pup sy uomfos xof S

ainyde] Juswdojara(81emyos ‘1 UN 8sInos BulwiugiBoideBepy jo mejlenn

HONITIIOXT

O NIUINTD
opupdsia

*31eM}jos ayi Jo asn Jawolisno uoddng

uoddng

3

*19WOISNO 3y} O} 2JeMYOS 8yl JaAj|eq

1aAlag
A

1sal

"$)}4OM }| 9INS d)BW O} 3IBMYOS 3y} Isol

A

*apod ay) buppm Aq ueid syy Juswsjduwy
9poId

A

‘paziuebio aq [Im 818MYOS aY) MOY ue|d

ubisag

+

/

‘wejqoad sy suyaq
sjuswainbay

$S920.d Juswidojanag alemyos
jeuoljipel] ayl

/

£ Do, pui a5iang 350wfoS 91 einjoe Juswdojere ewmyos ' Jun :esinon BuuuwiBoideBei jo » AO

D, XT
0 JFINTO
oA

dels syuswaanbai 8y} Ul swi} aiow puads o} Aressaoau si i Aym urejdxy

sdals 1810 8y} uely} swiy ssaj dn saxe} spod ay) Bunum jeyl sjeig o
10} 8|0k 89 pjnoys syuapnis ay|
S3AILO3Ar90
(siuswaiinbay ul ssop)i Uyl 8ouRUSBIURW Ul BNq B X1} 0} 810W YONLW 0S S1S0D Y Yulyy noA op Aum «

¢ BuUIpod snsiaA Buiisa) snsiaa ubisap ul puads NoA Op awl} Yonw MOH

SNOILOVYILNI LN3ANLS
Juenoduw os sjuswannbal aremyos are Aym

jwajqoud Wb ey o} uonnjos Buoim ay)
Buiaey uey) Jepaq ou si siy] ‘wajgoid Buoim ay oy uonnjos B 8l arey Ayl ‘SPIOM JBLIO Uj "8Jem)yos su}
Buisn ase sy juun syuawsaunbal sayy uy swajqosd J9A0ISIP 1,UOP UsHO Siawolsnd ‘ssadoud juswdojeasp
2JeMYOS [BUOINPE.} SU} U["UOHNLIUOD SjgeN(EA e S siy] ‘Hels ay} Je 1ybu sjuswalinbal sy Bumeb sezis
-eydwe BuiwwesBoidebsw ‘@ss ||,om sy sseo0id ayy ul deys uepodw) jsow 8y} ae sjuswalinbal sJemyos
1o} U] ‘sjuswalinbal ayy Buluysp awip Jo 10| e puads ‘op pue ‘pnoys noA ey moys sueyd asay; Isyiebo)

‘Buipod [enjoe suy Bulop uo ueyl Bugse} ul pue ubisep pue syuswalnba.
Ul y1oq uads st s} yonu Se 82im} Jeu} 810N “Buipod uo awil ey jo %0z puads Ajuo jim noA yosloid jesidAy
© U0 Jeyy @onoN ‘Asnpul uj joafosd jeoidAy e o} sdeys ayy jo ..me uo juads awy jo abejusoied smoys WHU
ay1uo peyo ay Buipod uy op Aayy ueyy ubisap pue sjuswannbai uyawny asow puads Ajjensn syoaloid o} uj

‘(sdeys ubisap pue sjuswaxnnbai ay) “"8'1)
ssa00.d Juswdoleasp asemyos oy jo sdais Apes ayy ul sBuojeq WBu sBuiyy Buiop uo siseydwa ‘AsNoINGO

‘ayeISILL JYS U 1o} sI siy) “dels siuswialinbal ay) Ut 3 Xij 0} S} Uey} soueU
-ajurew ul J xij o} dAIsuadxa aioul Sswll} 00| pue Bulsa) Ul 3l Xij O} SAISUSdxX® 810w s8WI JNO} S) :Ssed0.d
Juswdojenap aieMyos 8y} Ut Jaie| [un ayeIsilw B yojes juop noA ji 1oedwll 8y} SMOYS Y8} 8ui Uo Jeyd ayl

NOISsSNOSIa

2oyl ABONOINDIL Pup FINIRG JWNS A5

81007 'JUBLCOIBASQ SIBM)OS '§ JUN 198IN0D BunuweiBoiduBepy jo MSAD

I, Xq
LT

sdaig Juswdojanag
alemyos juaiapig ul
juads awy] jo abejussiad

%0V
ubisaqg bue
sjuawainbay

%0¢
Bujpod

%0t
Bunssl

sdals Juawdojanag
21eMyos Judidjiq ul eIsiN
JNVS 9y} X4 0} 1S0D SARe|SY

00L 08 09 O 02 O

Xt — Bupsal

aoueuauienN

Xl _ sjuswainbay

rEmEn_c_n.;an_ 2Jemlos uo ejeq awos

/

/

1 ABopnpag, puo nany amwifos Jof FALS 9409 ‘Juewdoiers(81emMyoS ‘| Hun 08ino) BujwuweiBoideBep jo (7o

ssaocoud Emc-... ojeAep asemyos ay} jo dejs juepodwl jsow ayy st deis sjuswasnbal ey Aym ureidxg
:0} 8|qe 8q p|noys suspnis ayl
3AILO3Arg0

ipanoiduwil ag Asy} ueo MoH ;anbea [jis a1e uwn|oo ybu ayy Ul sjuswaiinbel 8yl Jo YJIUM
cweiboud ybu ayy Bunum up nok o) useq Asy) eaey
wepodwi MoK ¢ssejo siuy Ui Bunum uaeq aa,noA sweiboid auy Joj sjuswalinbal inoA usaq eney jeym

SNOILOVHAINI LN3AN1S
¢siuy op BuiwwesboideBaw seop mol “ebeys sjuswaiinbal ey} ul noA sdiay buiwwesboidebeyy

‘sjuswalinbai oyioads ‘pajielep a)M 0} S 3l piey Moy puejsiapun noA diay [jim Jiun siy} Jelje esiosexe 8yl
"gpugsnoy) ay} ojul dn sjab sjuswalinbal pajrelep Jo Jaquinu sy} usym sjqissodwi Aireau sewodeq siIyi
“18y3960} }JoM pue ‘sjielep au} JO |[e JoA0D ‘a18jdwiod ad o} pasu Asy} :umop 8jliM O} pJey e sjuswalinbey
‘Aj@1ejdwod pue Ares)o siedojoAsp aJ/eMyos 0} Spasu Jiay} ajediunwilliod JoU Op SIBWOoISN)
‘(pedojeaap Bulaq s) aJemyos ey} se Usas) abueyo spsau jenjoe ,S1I8WOISND
‘peau Ajjeas Asy} Feym Mouy 1,UOp USYO SisuloisnN)

:(wejqoid aremyos |# s Asnpus se pajo usyo aJe sjuswalinbai uf swajqoid ‘Joe} ul) ssedo.d feuon
-ipes) 8y} yim sey Aisnpul swajqo.d 1sabbiq ayy Jo swos Jo} ajqisuodsal ale sjuswalinbai anbea Jo Buoip

"aAIsuodsai s SyUIY} Jawolsno ay} eym jou Ajqeqoud s| eaisuodsael,
sI syuIYy sadojaAsp ayl Jeum suesw anisuodsal, saop ‘Apoexa ‘yeypm “(aJe Ajjensn pue) ejdoad juaseyip Aq
Ajusiayip pejaidiajul aq ued sjuswalinbail (sjqeissiun pue anbea) peq ey "ep!is siy) uo sejdwexe sy} axel

&Buiyy ybu ayy op noA ued moy uayy ‘(anbea
Jo Buosm ase sjuswaiinbal ayy Jl ‘st yeyl) op 0} pesoddns si asemyos aul jeym Ajjoexe mouy Juop noA §

*Op PINOYS 8JeMYyOS 8y} Jeym Jo uonduosap oiioads e ojul)i SUIN} pue paau jo juswsiels [eseusb s sswolsnd
8y} saxe} Jasuibua ue ‘sjuswalinbal 81esld 0] "uonN|os sy} ajeald ssaooid Juswdojanap eremyos _mco_u_mg
ay} u1 sdejs sy} Jo 181 8Y | "Op O} SPaau aJeMyos ay) jeym noA |8} fay) :ws|qoid sy} suyep suawaiinbay

/ NOIsSsSNOsIa

o) XA /
0 NAINID

fumyy Bopnnpay, puo snay s of 74

QIMde| Juewdoeas] &IUMOS 1 Jun (esInoy BupnumiBoideBepy j0 MeASAD

E o) XT
0 JAINTD
i

éconbea [ips syuawainbes
asoy} jJo Aue aly

P

*asn jewsou Guunp sinoy 000°L 1sed]
je 10} paydnasajuiun una jjeys waisAs ayl

‘Buoim aie suewalnbal ayy
diey jou jjim Buipod
1seq oy} pue ubisep 1seq ey

*3jqey|al aq [leys weisAs ay)

*9snol & BJA
induy jjuiad pue esepsiu] Josn jeaiydelb
e Aojdwe jjeys eoepielul Josn walsAs oyl

‘Ajpudiij-iesn oq [jeys welisAs ayl

'sinduy 19sn JO %56 0} PUOIAS | UIYIM
asuodsal e apjroad |jeys weysis ay)

‘sinduy 19sn 0 %6°66 01 Isuodsal
1994409 3y} apinoad [jeys walsAs ay|

sjuawaiinbay (1an19g
1sea’ 1e) poon) jo sajdwexy

\

‘aAIsuodsas aq jjeys weisAs ayj

sjuswaiinbay (sjqeisaiun
pue anbep) peg jo sajdwexy

sjuswaiinbay aiemyos

/

/

5 oaapal pup 2nag amwifos xof 81 81297 WeIdOAS(SIOMOS ‘| JUN (98IN0D BupuwmeiBoidubep jo m o]

F5) X3
0 NLINTD
opapina

(suonnjos pue swajqoid Jejiuis o 18s e) sease wejqoid yum sjesp Buiwwesboidebeuws yeys uteidx3 o
:0} 9jqe 8q piNoys sjuepn)s ey}
3AILO3ra0

(yoresos woy Buiyihuans piing Asyy op ‘7ed e spjing Jepjing 8jiq
-owiojne ayy UsYm ¢Steo jo Buipjing ays o} aye|al s1eindwiod Jo} KBojeue BujwwesBoidebaw sy seoq

SNOILOVHIINI INIANLS
-(8s4n02 Sy} O IS8 8y} JO} PUEB) MOLIOWO} SIY} UO 8o

onpoud
® pjing Aey} ewi yoes sjusuodwiod ueaoid ‘Bunisixe esn :op siesulbue esemplrey reym op o} siedojerep
asemyos mojfe o} idwene ue st BulwwesBoidebaly "swin yoes yojesos Woly sremyos ejeseusb Ajreuonipen
‘puey Joi0 ey Uo ‘siedojeasp alemyog "eonpold o} juem Asyj Jeym uo Buipuadep sAem usieyip Ul wey)
a|quuesse ‘sieindwod pjing 0} Moy jo abpejmouy Jieyy uo peseq ‘pue syed Bunsixe ey Aeyy Ajualayip
spreoq pue sdiyo fenpiAipul ayi ife pjing i,uop Asy 1 "dojde] pue dopise ‘ojdwexe Joj—siendwoo jo sedA} e
-1oAes pjing seiuediuod Jeyndwo jsop “sieindwod jo Buipiing au s wwwesBoidebew 0} ABojeue poob y

“eaJe wojqo.d 1eyy ut wajqoid e eAjos 0} aAey NoA swi Aens auop si aul|
penop aui mojeq Buiyifiea3 ‘panosdui Ajlenupuod usy} pue souo suop Si 8ul| Paop ay} eAcqe Buiyiisen

‘eosR
wejqoid 8y} suyep O} paxJom oym siseuibus aul Aq suop 510m 8y} Uo pjing pue asn noA ‘siy} op o] ‘ease
1el Ul Wejqoid B Sey OUM JSLOISNO © JO} UORN|OS & Sjesld 0} S| aul} payop sy} mojeq dais suljo asodind ay)

-ease wajqod jeyy ul wajqoud senoied Aue Joj uoiN|os € 8jeald O} pasn aq Ued jey} uojejuswnoop
pUE 1eM}0s 812810 (2) pue ‘eere wa|qoid auy aulep (1) 10} st aull paRop U sAode dels syt jo asodind ey}

‘eaJe wejqoad e)es
SIU} [[RO JIIM @M ‘MOU 10 "Aem SWOS I Je|iLIS aJe Jey) SUOHeUIquiod uopnjos/we|qod JO 18S ajoyM & Je $300|
BuiwwesBosdeBbayy "Uohe|os! Ul uoleUIqWOD UokNjos/WSjqold U Je YOo| Juseop Buiwuwreiboidebepy

-sseo0.4d Buiwweiboidebaw ayy Jo MelA |8As]-do} e si siyL

zo_mm:OmE\

s Bopngag pus oy osay) 91007 Yuewdoiens(] 88Myos ' | Jun :98In0Y BujuumiBoduBe jo meAeAD

0 NTINTD
opuplsA

Jawoisnd JNOA

m uonnjos syl >

* 1
. — ‘uonnjos e sajeald
eae wojqoid ayy ul pue wajqoad syoads
wajqoad e 03 uonn|os e Aeas) e seuyep dejs siuL

eaJe Jeyy uj wejqoad
B 9Aj0S pue auljep djoy 0}
Oo)eIUBWINIOP pPUk BieMYo

(suonnjos Jislp yum swajqoad
Jejiuis Jo 19s e) ease wojqoad
e Jo s)oadse |je pueisiepun

‘ease wojqoid
e sauyoep dejs sjylL

buiwwesboidebop

Overview of Megaprogramming Course: Unit 1, Software Development, Workbook

UNIT 1: SOFTWARE DEVELOPMENT

SUMMARY
Software development involves more than just writing code.
SoFTWARE LiFE CYCLE
e The customer states the NEED for the software.
¢ The developer DEVELOPS the software.
¢ The software is USED, debugged, and enhanced.

* The software becomes obsolete and is RETIRED.

SOFTWARE DEVELOPMENT PROCESS

Requirements
Define the problem.

Design
Plan how the software will be organized.

Code
Implement the plan by writing the code.

Test
Test the software to make sure it works.

Deliver
Deliver the software to the customer.

Support
Support customer use of the software.

REQUIREMENTS
* Requirements define the problem.

* Since you cannot solve a problem unless you know what the problem is, defining the
requirements is the most important step in software development.

¢ Wrong or vague requirements cost money.

Overview of Megaprogi ing Course: Unit 1, Software Devel Workbook

'

MEGAPROGRAMMING
e Megaprogramming is the next generation in software development processes.

¢ Megaprogramming looks at similar problems and solutions as opposed to seeing each as
unique.

* This set of similar problems with their solutions is calied a problem area.

¢ Megaprogramming takes advantage of the similarities and differences between the problems
when generating a solution to a specific problem.

* Inthe following figure, everything above the dotted line defines problems and solutions within
the problem area. The steps below the dotted line are done to creat. a specific solution for
a specific problem within that problem area.

. Understand all aspects of the

This step defines a probleimn area (a set of similar

problem area. problems with their solutions).
Software and documentation to
help define and solve a problem

in that area
This step defines a problem Create a solution to a problem
and creates a solution. in the problem area.

The Solution
e Solution__

Your Customer

A good analogy to megaprogramming is the building of computers. Most computer companies build
several types of computers—for example, stationary and laptop. They don’t build all the individual
chips and boards differently. They take existing parts and, based on their knowledge of how to build
computers, assemble them in slightly different ways depending on what they want to produce.
Software developers, on the other hand, traditionally generate software from scratch each time.
Megaprogramming is an attempt to allow software developers to do what hardware engineers do: use
existing, proven components each time a product is created.

Overview of Megaprogramming Course: Unit 1, Software Development, Workbook

UNIT 1: SOFTWARE DEVELOPMENT

EXERCISES

GENERATING REQUIREMENTS

Write down all of the information you think you would need to develop a software program that would
solve the following problems. Don’t worry about specific procedures. List only all of the information
you would need to solve the problem.

1.

Beach Trip ~ You and a friend want to drive to the beach for a weekend and you want to know
(1) how long it is going to take and (2) how much the gas is going to cost.

Scheduler — You want to develop a program that automatically schedules all of your activities
during the week. You warit to be able to run this program every Sunday so you know the time,
date, and location for each activity.

The Cleaning Robot — With such busy lives these days, you decide to develop a robot that will
clean up litter in a teenager’s room.

Several Robots — Suppose you work for United Robot Workers, Inc. (URW). Three
customers approach you. Each has different needs:

a. Customer 1, a farmer, owns a large cornfield and has trouble finding time to harvest
it. She wants to know if you can provide a robot that will harvest her corn without
human supervision.

b. Customer 2 is from the Alaska National Guard, which is constantly rescuing people
who wander too far afield in the tundra. Mounting a rescue party is time consuming;
people have died while the members of the party are gathering. The Guard thinks
having robots ready could eliminate these life-threatening delays.

c. Customer 3, from the National Park Service, is concerned about growing amounts of
litter in national parks and wants to know if you can provide a robot that can pick up
the litter.

These three statements correspond to the customers’ vague understandings of their problems
and of potential solutions. Your task is to write a set of questions for each customer that would
clarify each of the problems.

Vending machines — The Student Government Association (SGA) has funds to build a
vending machine room near the central hall. The principal has agreed to let the SGA go ahead
if they make provisions to keep it attractive and litter free. It is your job to define the
requirements for the vending machine. What information do you need to define the
requirements?

List the exact requirements for the particular vending machine you were assignedin class. The
requirements you come up with will most likely expand beyond the requirements identified
in the class discussion.

Overview of Megap

(-

ing Course: Unit 1, Software Development, Workbook

This page intentionally left blank.

Overview of Megaprogramming Course:_Unit 1, Software Development, Workbook

UNIT 1: SOFTWARE DEVELOPMENT

TEACHER NOTES FOR EXERCISES

Here are lists of needed information for each of the problems. Each list is probably not complete. Again,
the point of the exercise is not to create a comprehensive list but to make the students realize how hard it
is to generate a complete list.

Several of these exercises deal with hardware as opposed to software. However, the course lecture material
focuses on software. The point of the exercises for all units is to get across key concepts in software
development and in megaprogramming. We have used examples in these exercises that we feel will get the
conceplts across 1o the students without worrying about whether or not the example was softw.:. related.

The first three exercises are optional. The fourth exercise begins the introduction of what the students will
see in the laboratory. The fifth exercise is threaded into the next day and can be used as homework.

GENERATING REQUIREMENTS

Write down all of the information you think you would need to develop a software program that would
solve the following problems. Don’t worry about specific procedures. List only all of the information
you would need to write th > software.

1. BeachTrip ~ You and a friend want to drive to thc beach for a weekend and you want to kaow
(1) how long it is going to take and (2) how much the gas is going to cost.

s Cost of the gas

» Number of miles to the beach

¢ The speed limit

* How much time it takes to stop for gas

s How much gas you have in the tank when you start the trip
s How big your gas tank is

s How many miles per gallon your car takes

You also have 10 make certain assumptions, such .s the following (others might make different
assumptions, which would change the program and the answer):

* You always drive at the speed limit.
s The only time you stop is when you stop to get gas.
» When you stop for gas, you always stop for the same amount of time.

* There is no traffic.

ing Course: Unit 1, Sof| Devel ‘Workbook

Overview of Megapt

hid -4 i e

2. Scheduler — You want to develop a program that automatically schedules all of your activities
during the week. You want to be able to run this program every Sunday so you know the time,
date, and location for each activity.

A list of all of the activities you are involved in for the week

— Those that are flexible and can be performed on any day (e.g., working on your term paper)

— Those that can only be performed at certain times (e.g., when the computer lab is available
for use)

How long each activity takes

Whether there are any activities that need to be performed before other activities can start or
finish (e.g., you have to practice your piano before your next piano lesson)

What your start time is for the day
What your end time is for the day

If there is a deadline for any of the activities (e.g., your term paper is due on Thursday, so it is
better not to schedule that work for Friday)

How you want your schedule to be presented (e.g., so it looks like a calendar or just a list for
each day followed by the time)

It might be usefi:l to have a separate text file to hold those activities that occur every week.

3. The Cleaning Robot — With such busy lives these days, you decide to develop a robot that will
clean up litter in a teenager’s room.

This one is a lot harder because each teenager has a different room layout and different types of
litter

How often does the room need to be cleaned? This will have an impact on how much litter there
is—cleaning once a month means more litter to pick up than cleaning once a week.

How much litteris in a typical teenager’sroom when it is time to do the cleaning? Thiswill affect
the size of the bag that the robot carries to hold the litter.

What distinguishes litter from nonlitter?

What types of litter are there? Is the litter usually small (paper, bottles, cans, wrappers) or might
it be bigger?

Should the robot discriminate among articles it picks up ~ e. g., clothes on the floor that should
gointo a laundry basket as opposed to the trash can? Are there other items that should not go
into the trash can? What should the robot do with them?

What does a typical teenager’s room look like (for example, what kind of furniture is there)?
Do we need to search on top of each piece of furniture for litter or can we look just on the floor?

How much time does the teenager expect (or can the teenager afford) each cleaning to take?
This will have a direct impact on how fast the robot must work.

Overview ol Megaprogramming Course: Unit i, Software Development, Workbook

Specific information you would need for programming your robot includes:
¢ The amount of energy the robot needs (maybe you'll be strapping battery packs on).
¢ The size of the bag your robot will have for litter.

¢ How you plan to make your robot traverse the room. To do this, you will need a map of each
room and a strategy for making sure you cover all parts.

¢ How you plan on getting a: vund fumniture.

s How you plan on sensing the litter (e.g., a metal detector) and the range at which your robot’s
sensors can sense the litter (e.g., within 1 ft, 3 ft, etc.).

Several Robots — Suppose you work for United Robot Workers, Inc. (URW). Three
customers approach you. Each has different needs:

a. Customer 1, a farmer, owns a large cornfield and has trouble finding time to harvest
it. She wants to know if you can provide a robot that will harvest her corn without
human supervision.

b. Customer 2 is from the Alaska National Guard, which is constantly rescuing people
who wander too far afield in the tundra. Mounting a rescue party is time consuming;
people have died while the members of the party are gathering. The Guard thinks
having robots ready could eliminate these life-threatening delays.

¢. Customer 3, from the National Park Service, is concerned about growing amounts of
litter in national parks and wants to know if you can provide a robot that can pick up
the litter.

These three statements correspond to the customers’ vague understandings of their problems
and of potential solutions. Your task is to write a set of questions for each customer to clarify
each problem.

Thisexerciseleads up to the laboratoryin Unit 3. There, you will play the role of customer. The scope
of the problem area will be restricted considerably more than it is here, making the questions easier
to answer. The purpose of this exercise is to get the students thinking about robots. Questions they
might pose include, but are not limited to, the following:

* How much is the customer willing to spend?

s Forthe Alaska National Guard, what should the robot do with the people once it finds them?
Should it pick them up and carry them to safety, or should it carry shelter and supplies with it?
What is an acceptable speed for the robot?

s How much com (for the cornfield robot) or litter (for the National Park Service) should the
robot be able to carry?

Remember to make students focus on requirements rather than solutions. They should not ask
questions like, “What type of locumotion mechanism do you want?” or “What is the maximum
speed of the robot?” As employees of URW, they should already know the answerto such questions.

Overview of Megaprogs ing Course: Unit 1, Soft Develop Workbook

Vending machines ~ The Student Government Association (SGA) has funds to build a
vending machine room near the central hall. The principal has agreed to let the SGA go ahead
if they make provisions to keep it attractive and litter free. It is your job to define the
requirements for the vending machine. What information do you need to define the
requirements?

The answers to this exercise will follow a different format to support classroom discussion and lay
the foundation for a homework exercise and lead-in to a Unit 2 exercise.

It works well to have individuals or groups put their lists on large sheets of paper and tack them to
the wall. These lists can then be used in the Unit 2 discussion of similarities and differences.

Class Discussion:
You need to know the following things:
o What kinds of items will be sold?

Generate a list of possibilities with the students. The idea here is to have a variety of items.
The list might include soft drinks, hot soups, school supplies, snack crackers, fruit juices, nuts
and candies, sandwiches, etc.

o In what price range should the items be?

(There are a lot more requirements. These are just the first two that will help determine all of the
other requirements.)

Generate lists of possibilities for each question. Then, imagine several different vending machines,
each fulfilling a different requirements set. Examples:

— A sandwich machine that sells only sandwiches and chips. The sandwiches may be hot or
cold.

— A soda machine that sells by the can or by the cup.
— A snack machine that sells nuts, crackers, candies, etc.
— A hot meal machine that sells soups, TV dinners, etc.
— A supplies machine that sells pencils, pens, paper, scissors, folders, etc.
Each one of these vending machines will have its own unique set of requirements. These

requirements might include a thermometer to monitor temperature, unique display requirements,
varying input support (e.g., bills as well as coins), size of output bin, etc.

Come up with exact requirements for the particular vending machine you were assigned in
class. The requirements you come up with will most likely expand beyond the requirements
identified in the class discussion.

Assign each student, or small groups of students, one of the machines discussed in class. Their
assignment is to list exact requirements for their particular vending machine. The requirements they
come up with will most likely expand beyond the requirements identified in the class discussion.

1 ABojouyrag pup xnay aummfos xf +°C einyoe *BujwwwiBoiduBap jo sideouo) ‘'z yun esunod BujwweiBoideBep jo . FIYe)

mu\&mﬂmuxm / .

opuplsiA

asnaJ sjowold surewop moy uieldxy
buesuibue uopeoldde aulsq e
buyiesuibus urewop auyaq e
urewop e jou si Jo si Buiyiswos Jayleym suruisiaq e
urewiop suysq e
:0} a|qe 8q pinoys suapnys sy
LINN 3HILN3 3H1 HO4 S3ALLO3rdo0

‘Buiwesboidebaw uo [rejap alow ol ob |IIM am ‘Yun siy} Uy

‘Buiwwesboidebaw Jo 1daouod ey} 0} NoA pPadnpoJjul Os[e S\ ‘sjuaw
-alinbas pue Yuswdojanap aremyjos jeuonipel} ‘sasseo0id ajoAd-a)l| 81eMyos Jnoge pade) aMun ise| sy uj

(NOISSNISIa

safruny Mool pup snon siomifos of

0, XT

Sulwweiboideba
jJo sidasuo) :g uun

L ABOMNNDIL PUD Ny A0S 20f b4 8o ‘Buy Boidubep jo sid 0 ‘THUN esino) BuwweiBoiduBep jos. IO

ER) yE] /
0 ¥AINTO
opupiaA

Jayjoue ajquwasal Aew
we)qo.d auo moy Jo sse|psebal ‘anjos o} sws|qoid anbiun aAey si1awolsnd/ejdoad Jey) pueisiepun o

:0} 8|qe 8 PINOYS SuspnIs ayL
3JALLD3r80

iswiejqoid auy 8A|0S
0} op NOA pjNoM JeyAA ‘'swe|qo.d [eojjewayiew o} suoyn|os sapinoid jey} sseuisnq e uninof esoddng »

iswiajqold om} sy} Usamiad SeoUBIBlIP Ul dle JeUM »
SNOILOVHALNI AIN3ANLS
iswiajgoud siayy Buiajos noqe ob Asy) ued moH

‘eSIOA-801A JO ‘UOIIPPE Uses] suoswos diay 1,uom yoogosyo e Bulouejeq inq ‘suol
-ouny yrew ajduuis Joj Bupise aie yiog "aA0s 0} swisjqoid oM} ey ajdoad oM} ‘apljs siy} Ut ajdiuexs sy} U

-aA(0s 0} swigjqoid anbiun umo Jiayy arey saiuedwooy/aidoed |y 8} Jo 10eq

/ ZO_mm:Om_n\

safumiy Qoyounyo s pup amay aowjos xf &8 811507 ‘BupuiuwiBoiduBeyy jo deduo) 'z YU #81N0D BuiuweiBoIduBEp JO MOIAISAD

JONTTIFTOXT j
0 HIINTD
squpliia

oelqns pue

ppe 0} Moy Jajisis ol ¢ wejqoid
Aw yoea) aw djoy jm
jeyl bunjowos pasu |

“ooqyoays Aw I wejqoid

aduejeq aw djay jm
yey) Bujyyawos paau |

swia|qoid s.a|doad

L ornngog pup senag aowijos o ©C 01207 ‘BujweiBoideBei jo s1deduoD ‘Zyun esinod BupuumiBoideBe o AQ

E o) X
0 JIAINTD
opapiA

uni Buoj sy} Ll Yo shed swa|goid s awoisnd ay} Buipuejsispun uo xJom jo 10| e Bulop eyl ureidxy .

swajqo.id anjos o} sAem Auew ase aisy) ey uejdxy o
:0} 8|ge aq pjnoys syuapnis a8y
S3ALLO3Ar€0

iPiey 1ey; ui padojenep sweiBoid esemyos JUSIBHIP U] SERIEUCWILIOD JO 10| B 8Je 8Jey} ey} Yulul noA
oq ¢, (sewreb Jeyndwood pjing o} ‘seminys adeds Aj} 0} ““6°a) aremyos p|ing o} 8| NoA pinom plel jeymu; «

SNOILOVYILNI LNIANLS

{Siusuodwod swes ay} JO BWOS UBJUOD PiNOD SUORN|OS JIBYL Ji 88s
0} oM Juo.-dn a8y} op pinoys noA Jeyl uowwoo uy yBnoua aaey swajqoid Jeyiaym auiuwiaep NoA op MoK

Jejiws ase eyl swajqoid Buiajos dn pus Aay} os ease
ue ui azije1oads o} pua) (g) pue Jeared Nay} Buunp swajqoid Auew anjos (1) Ajeaidhy m._m&u?mu alemyos

asneoaq uni Buoj ayy ul yo shed swajqoid 8y} puelsiapun o} g uodQ ul pasinbai siom juoly-dn ayi (e Buiog

“JaWOIShO Puooes JNoA Asiyes piNom siyL "UORNG ,JOMSUE 10} Sy, Ue 8ARY PINOM J8ylo 8y] e
-woysno isaij ey djay pinom jeyi joye|nojes plepuels e ad pinom auQ "sIojejnojeo g sjealo o) siied aseyy
asnh pjnod NoA “SUOHOUN} [edleLayIeW plepuels op o} sued Jojejnofed ubisep PINod NOA “suolenod
-fea yrew oiseq annbai swajqold Yyioq o} suoyn|os ay; ‘ejdwiexs 104 ‘sjuauodwiod suses ay} Jo SWOs
uleluod PINo2 SUORN|OS Yioq Ji 885 “aAjos o} Buiky ase noA swajqoid ayy pueisiepun 4siig ‘g uondQ

"pioye ued Jo speau Ajjeas sI8wolsSno 1NoA jo Yyoes Jeym uey} siow aq Aew ‘Jeasmoy ‘uoynios siy
‘(spsed ysey) 8y} op 0} pasn aq ued Jajidwod [eased sy} pue Yrew ay) op ued jaayspea.ds eupy) we|qoi
yoes aAj0S |IM 1ey} asemyos ssodindiinw yym Jaindwoo e apiroid ‘ajdwexs Jod ‘uonn|os yeys idope
ol ssewolsnd inoA Buiouiauod Ay pue ‘swajqo.id Auews saajos yey uoin|os fessusb e ejess) 'z uondo

"SjiIMS Yrew oiseq yoesy disy 0} spJeo ysejs dojaasp pue 4ooqyosyo syl esuejeq diey o} Jojejnojed
e apirosd ‘ajdwexs 104 "wejgoid oyoads umo sy Buiajos suo yoee ‘suoiinjos om} ejeal) | uoidp

‘oplis snomeid ey} uo swejqoid sy} eAjos 0} suoido Buimoj|o} 8L} asn ued NOA

/ zo_mmaom_n\

-

afeany, Botonpay pus xnay aswyios of €°C

ede ‘Buy BoiduBeyy Jo wideouod ‘Zyun :esinod BujwuwmiBoiduBen jo meen0
o) XT /
0 NIINTDO
opulna
[
Z w9jqoid = I wajqoid
[

uonnjos Auy Bupelauay) ai0jog pejejoy a1y SWo|qoid syl MOH pueisiapun :¢ uondo

Jejidwod jeosed e pue 1 s —
1eeyspeaids e yym seindwods v l

(annoeye-1s09 Jou S|] ybnowy)
sSwejqoid Y1og SOAJ0S Jel) Uopn|jos | ejelauey) :Z uopdo

spied UCN
:ua_n_

suonnjos Z aesauen) :L uopdo

swd|qoid s.9]doad buinajos

/

L Ao puo e 605 e eingoe- ‘Buy BoiduBey jo 5idesuoD 'Zyun ‘esinoy BupuumiBoideBep jo.. JAD
D, X3 J
0 ¥NAUINTD

oA 8s|019xa qe| ayy Jo} pasn Buleq urewop 10401 3y} UiM Jejjiwe) ag

tirewop e Jo }dasuoo eyy pueisiapun e
:0} 8|qe aq p|noys syuspnis ayl
S3AILO3rd0

(weiboud suo Ajuo ul yJom pinom jeyy

seinpacosd uaaq aleyy) saeH ¢swesboid anoA jo jof e ui pesn aA,noA jeys sainpecold uspuM NOA aneH
SNOILOVHIINI LN3ANLS
iaremyos dojanap sn djay surewop ued MoH
‘qe| 8y} Ut [ae)| Jo slow 8as ||,oM '108/qo jo adA} awwos Joj Aojuie) umousun yoseses o}] jeob diseq
8y} a18ym ‘suressa} Jo f1auieA e Ul syse) Jo A1slieA e wiopad sjoqos esay] ‘sjoqol spjing yeys Auedwoos Areu

-1Bew ue uo paseq S| pejeald aney am utewop ay| "(asemyos Aue Buium inoynm swesboud «0&9 ajealo IM
noA yoe} ul) sidesuod BulwwesBoidebawl noA yoea) o) jaey 0y pappe comm oAy sanjiqedes ybnoy; 1oqoy

!

By} |84 UO paseq Si urewop sy] s10q0140 uewuop ay} yum Bunyiom aq o} bulob ase em ‘esioiexe qej Jno Jo4
‘(1se40} © BSIeAR)] O} Spesu

«39&65562:0&@ w% ..m.mvEmEmv:_mc_‘_mmc_mcmucm?.E._m;:mwﬂm>mho;m_c._:«vcm_..:m;
-10} 8AOW O} SPasu }0qol & “B6'8) sme| Inc-lyBnouyy [[em sinis pue abpejmouy peje[ninooe eaey sieeuibul

eale sy uj suopnjos/swajqoid jenpialpuj Buowe suojjejiep
eaJe ay} uj suopnjos/swojqoud jo sejpedolsd uowwon «
:Jo Yeads siaaujbus aioym Bale paujjap-||om B s| Ujewop Y :uogjuyeq

.mSmEobmmeEm_neammmsmc___motmﬁm;oc___Bmg.m:c_c:mmco_“:_omvcm Em_moa comwﬁmc_v_oo_
40 pesjsul vase wajqo.d e ojul suonnjos/swajqo.d essu} dnoib ued em ‘UowWoDd Ul ybnoua st aiayl Usym

‘aBeuew 0o} Big 00} 80 P|NOM SIY} :UCIHUYSP 38U} 1} Pinom swsjqoid jo spuesnouy
1B} 4ONS Urewop JNoA auyap o} 8|gNoJ} 84} ULOM Jou osje S! }| “suonn|os Jiay} Bunesio uaym Jayiaboy wayy
19pIsuod 0} Aed jou Seop 3 —UOWILIOD Ui 0] € 8ARY J0ou Op suolenba Jeaul| Buinjos jo wejqoid eu pue 8jo0
e wo eale ayy Buipuy jo wajqo.id ayy ‘sjdwiexa 104 ‘1ay1abo} way) JapISuod 0} 8SUas Sayew § Jeu} UoWWOoD Ul
ybnous aAey suonnjos pue swe|qoid JNoA Jey ains axew o} pasu NoA ‘eale Wwe|qoid aAnoa)a-1S00 e sARY O]

/ zo_mmnom_o\

safsuoly Bojouyss) pup senay aemigos of VT eI 'BujwwniboideBepy jo sidesuo) ‘2 uun esino) BuwwesBoiduBey jo meinenp

o, TIOXT
0 NIINTD
opnisia

("sa|or1sqo ploAe 0} swiylioble yoseas
|ejoads paau sjoqoJ awos ‘ajdwexs Jo4)
suoljnjos

Buowe pue swajqgoud 10qou
[enpiAlpul Buowe sasualayiq ®

sioje|nojen

saue|day je1ds8wwo)

SueAJuIN
(*aanpasoud
yuou-aoe} & aAey Jje Aay) ‘a|dwexa 104) SUuojsiAsaL
suohnjos sia)s|bay yses

10q0. JO Sajjijeuowwo?) @

sauiyosep Huipusp

E sawer) O9pIA

(‘Bupyiswos

10} Yyoleas 0} paau jje Aay) ‘ajdwexa 104)
9A|OS S]0qO0. eyl

me_n_o._n 9y} JO sajjljeuocwwio) ¢

$]0qOY JO ulewoq

sealy wa|qoid

surewoq)

o ABoronpag pup sy aomifos of 3C 8,267 ‘ButuweiBosdeBepy jo sidesuo) ‘Z yun esinod BuwwwiBoideBepjo . A0 4

FONTTTIOXT _
0 NAINTD
opupliA

asnal poddns sulewiop Moy puejsispun e

urewop ey} ui ale
1ey; swajqoud [[e aAjos O} pasn aq ued jey) sainpacoid atemyos pjing o} utewop & jo ebpsimouy asn e

:0} 8|qe 8q pP{NOYs SIuspnis a8yl
S3AILO3rgo0

(oN) ¢esnaJ sy} Japisuod nok oq ¢ali e woy speal jeyl uojesado Q3 € O} S|[ed Inoge JeYm suol
-ouny SO ® O} S|[ed INOAE JeYA (SSE[O Ul pasn 8A,noA jey} sainpasoid UoWWoD Jeyio sweu noAued

SNOILOVHALNI IN3ANLS
£S1daou0d asay) ajelodiooul Buiwweiboidebaw seaop moH

"urewlop 8y} ul swajgoid JaYl0 WOl Jusiayip ale jey} wsj
-qoud sy jo sped asoy; Ajuo Inoge ALIom 0} BABY 8M USY} ‘UeLIOP B Ul UOIIN|OS Mau e ajesauab am Jsnsuaym

"8ou0 Ajuo sainpadold asau) M
0} 9ABY PINOM M ‘UIRLIOP 8U} Ul SUOHN|OS |[e JO} Sallile|iLUIS 8y} SSaIppPe Jey) $81npado.d 8y} 8snal ued oM ||

pajsa} si weiboid yoea yoym ul Jauuew ay} Jo Yoni
pasn swyplobje ay; jo Auepyy
wesbouid yoee dn axew jeys sainpasoid ey} jo Auely

:shem Auew uj Jejluis eq
pinoys sweibo.d esay} ‘elojesey | swalqold Jejiwis ssaippe urewop e ul (suonn|os) swesboid aremyos |y

"urewIop oy} Ul Wajqoid yoes 0} UOWWOD ale jey} sjuswalinbal ey} Uo paseq aJe Saie|IWIS 8say] "weyy
Buowe sanrejWIS Urelad 10adXa Ued aM pue ‘aWwsy} UOLILLOD © UO SUOIjeLIeA aJe urewop e u| swajqoud ||y

"urewuop e ui swajqoid Auew Buiajos u) Aipsjeadal asn ued am Jey) alemyos pjing o} sn diey surewoq
NOISSNOSsIa

-

uiy, ooy pus smang s of S°E

noeT

BujwweiBoiduBep jo 1d8duc) 'Z Yun :esino) BujuwwiBoiduBepy jo meend

[jo) XF
0 NIINTD
Ui

("sejoeisqo sSploAe 100
ayl ains sayew jey) ainpasoad
yo..ees ay) ‘ejdwexo 1o4)

‘suonn|os juaiayip buowe
saduaJsayip 9y} sjuswajdwi
jey} opod UM

(eanpasoud
yuou-aoe;} ay; ‘ejdwexa 104)

"suonnjos |je ui
}1 asnal uay) pue wajqoid

ay} jo sued uowwod
3y} SAA|0S Jey) P09 SIM

p

o

\

\

/

(‘sejorisqo
ploAe o} swyitoBje yasees [ejoads
paau sjoqol sawos ‘ajdwexa 104)
suopnjos Buowe pue
swajqo.id 10q0.4 [enplAIpul
Buowe saoualdyiqg ®

(*aanpaosoad yuou-ase}
e aAey jje Aoy ‘ejdwiexa 104)
suonnjos

10401 JO sajjijeuowwio?) ®

(‘Buiyiowos 10} yaiees

0} paau |je Aey) ‘ejdwexs 104)

[0S S10q04 jey} swajqo.d
3y} JO saljeuowswo)

S]0qOY JO uiewo(

asnay

/

N ABoRrnay, puB wnay WS 10f 92 M9 'BuwweiBoideBey 10 sidaduor) ‘2w esinoy) GunuwesBoidubay o 4 O

- T@ X3
0 ¥TINTD /
spulsgp

wajqoid ey}
10} vonN|os e sieseuab pue wa|qoud Jejnoiued e pueisiapun am a1aum ‘Bunssuibus uoneolddy —

urewop
aInua ue Joj suonnjos asedaid pue swaqosd ay} puejsiapun am aiaym ‘Buussuibus urewoq —

:sped om] ojul Jijds aq ued JuaWdo[aASp aIEMYOS Jey} puelsiapun e
10} 8{ge aq pjnoys suapnis ayt
3AILLO3r80

JAUM é1eauibua uoneaydde ue 1o Jasuibua urewop e aq Jayies NoA pinopy e
SNOILOVHILNI IN3ANLS

UIBWIOP B PUBISIOPUN 8M USUM 8Yi| S1 JuaWdOjoAap a1eMHOS JBUM 888 ||,9M MOLIOWO]

SuoNN|os Jno aeald o} Bupaauibus urewop ul padojanap aA,8m 81eMYos asnay
1awolsnod e JO Wwajqoid [enpiApul UB O} UORN|OS B 8jeal) e
Jowolsno Jejnoiued e Jo we|qoid ay) puelsiopun e
:am asoym ‘Bupdsuibus uopesyddy 2
SJEMYJOS B|(JeSNal 8jeal) e
ufewop ey} ul swajqoid 0} suonnjos ajeasd o) Aem 1saq ay) sulualaqg e
ulewop e ui swajqoid auy puelsiapun e
:am ajaym ‘Bupesujbuas ujgwoqg |
:sued om) ojul Juawdojeasp asemyos Jids s 187
‘ainaid Bujwwesboidebaw no 0} %oeq MON

[NOISSNOSIa \

Bfupyy ABopouya] pup RN 2ONSOS J0f 92 oimoa7 ‘BupweBosdeBely jo sidesuod ‘2 Nun 8sinod EupwwziBoiduBayy J0 meIBAD

e I
e 19WOISNY) INOA \/
Bupeauibuz uonn|jos ayl X

sjuawalinbay
Jowoisn)

"urewop ayj ui
wajqosd e 0} uonnjos e ajeald

uonesyddy

Joeqgpood
ay} ul wajqgoid e A0S
djoy o} uojejusawinoop
DUe 3lemyos
Bunesuibuy

ulewoq | "(suonnjos pue swajqod
y1oq) uiewop ay}
Jo syoadse |je puejsiapun

Buiwmwesboideba

Overview of Megaprogi ing Course: Unit 2, Concepts of M ing, Workbook

- i -2 {~d

UNIT 2: CONCEPTS OF MEGAPROGRAMMING

SUMMARY

DoMmAINS
* Domains contain related problems and solutions that have:
— Similarities among problems
- Solutions with common parts

— Variations among the problems and solutions

Problem Areas

Domain of Robots
Video Games

@ Commonalities of the
problems that robots solve
(For example, they all need to

Vending Machines
search for something.)

Cash Registers

. = Commonalities of robot
Televisions -

solutions
(For example, they all have a

Minivans face-north procedure.)

Commercial Airplanes Differences among

individual robot problems
and among solutions

(For example, some robots
need special search
algorithms to avoid
obstacles.)

Calculators

¢ When defining domains:

— Make sure the problems and solutions have enough in common that it pays to consider
them together.

— Do not include large numbers of barely-related problems in the same domain.

¢ When identifying a problem in the domain, you only need to identify how it differs from other
problems. What is common to all problems defines the other characteristics of the problem.

ing, Workbook

_Overview of Megaprogr ing Course: Unit 2, Concepts of M

¢ -and -2l =

When solving a problem in the domain, you can make use of what is common to all solutions.

Domain of Robots

Commonalities of the
roblems that robots solve
For example, they all need to

search for something.)

Write code that solves the
common parts of the problem and
then reuse it in all solutions.
(For example, the face-north
procedure.)

Commonalities of robot
solutions

(For example, they all have a
face-north procedure.)

Differences among
individual robot problems
and among solutions

(For example, some robots
need special search
algorithms that will allow them
to avoid obstacles.)

Wirite code that implements the
differences among different
solutions.

(For example, the search procedure
that makes sure the robot avoids
obstacles.)

MEGAPROGRAMMING
Megaprogramming has two main tasks:
1. Domain engineering where we:
* Understand the problems in a domain
¢ Determine the best way to create solutions to problems in that domain
* Create software that is reusable in all solutions in the domain
2. Application engineering where we:
¢ Understand the problem of a particular customer
* Create a solution to an individual problem of a customer

* Reuse software we have developed in domain engineering to create our solutions

Overview of Megaprogramming Course: Unit 2, Concepts of Megaprog: ing,

UNIT 2: CONCEPTS OF MEGAPROGRAMMING

EXERCISES

Continue with your vending machine problem (Unit 1, Problem 5). On the board, or on large
sheets of paper, list the requirements generated by the students. Ask the following questions:

Similarities:

e Are there any similaritics among the requirements for the different vending
machines?

* Could a manufacturer design a component for each similarity?
Differences:
e What requirements are different from vending machine to vending machine?

¢ How could the differences be accommodated? Could any of the differences be a
simple modification of an already identified component? Would it be necessary to
build an entirely new component?

Based on these components, what components do you need to come up with for your vending
machine? This could include similar components as well as components that are different
from all other vending machines. You should also identify which components need to interact
with each other, which components you feel are reusable across other vending machines, and
which components are unique to your vending machine.

Each group of students working on a particular vending machine should come up with a list
of components that they need to build that vending machine. Each group should present its
final list of vending machine components to the class. For each vending machine, discuss the
following questions:

¢ Have they designed a vending machine?

* Were they able to identify “reusable” components (i.c., components that could be
used with little or no modification)?

* What components did they have to create to handle requirements unique to their
vending machine?

* Would they consider vending machines a class of common problems and solutions (a
domain)?

* What are some of the benefits of going through these steps?

When you are finished, answer the following questions:

Qverview of Megaprogr ing Course: Unit 2, Concepts of Megaprogs ing, Workbook

¢ Could you use megaprogramming concepts to help build vending machines?
* What would the domain engineer do in this domain?
* What would an application engineer do in this domain?

Discuss the robot problem from Unit 1, Problem 4.

e Make a list of common jobs and tasks that the three robots in Unit 1, Problem 4
needed.

* Make a list of specific jobs and tasks that not all the robots needed.

HOMEWORK
1. Consider the following—are they domains? Why or why not?
» The process of applying to college
» The process of proving equations
* The process of school bus scheduling
¢ The process of transportation scheduling

2. Describe a domain in today’s world of teenagers. List the similarities and differences in your
domain.

Overview of Megaprogramming Course: Unit 2, Concepls of Megaprogramming, Workbook

UNIT 2: CONCEPTS OF MEGAPROGRAMMING

TEACHER NOTES FOR EXERCISES

1. Continue with your vending machine problem (Unit 1, Problem 5). On the board, or on large
sheets of paper, list the requirements generated by the students. Ask the following questions:

Similarities:

e Are there any similarities among the requirements for the different vending
machines?

Examples of similarities might include the need for the following: temperature monitor,
display, input, output, storage modules, etc.

¢ Could a manufacturer design a component for each similarity?

This should generate a list such as coin boxes, mechanisms to deliver the merchandise,
display units, utilities units, storage units, housing units.

Differences:
e What requirements are different from vending machine to vending machine?

Examples of differences might include a microwave to heat an item, a special option that
makes change for bills, etc.

¢ How could the differences be accommodated? Could any of the differences be a
simple modification of an already identified component? Would it be necessary to
build an entirely new component?

For example: A microwave to heat an item would probably have to be a new component.
A bill changer could probably be a modification of the existing coin/bill input mechanism.

Based on these components, what components do you need to come up with for your vending
machine? This could include similar components as well as components that are different
from all other vending machines. You should also identify which components need to interact
with each other, which components you feel are reusable across other vending machines, and
which components are unique to your vending machine.

Assign a group of students to each of the vending machines identified in the Unit 1 exercise. Based
on the components discussed today, have them identify what components they will need to come
up with for a complete vending machine. This could include similar components as well as
components that are different from all other vending machines. They should also identify which
components need to interact with each other, which components they feel are reusable across other
vending machines, and which components are unique to this vending machine.

This can be done either as a homework assignment or as a small-group exercise at the end of Unit 2
or before Unit 3.

Overview of Megar

ing Course: Unit 2, C

of M ing, Workbook

i {- e b

Each group of students working on a particular vending machine should come up with a list
of components that they neced to build that vending machine. Each group should present its
final list of vending machine components to the class. For each vending machine, discuss the
following questions:

Have they designed a vending machine?

See if the other students can identify any missing components. The point of this question
is 1o help the students see that, like requirements, making sure that you have everything is

difficult.
Were you able to identify “reusable” components (i.e., components that could be used
with little or no modification)?

The students should understand why having reusable components can save time and
money. These components can be software programs or actual vending machine hardware
components: the idea of savings remains the same.

What components did they have to create to handle requirements unique to their
vending machine?

All solutions will have unique parts. If there were no unique parts, then the solution would
be exactly identical to another problem/solution and you would only have to build one
solu‘ion.

Would they consider vending machines a class of common problems and solutions (a
domain)?

Yes. There are enough similarities to make it worth your while to understand the similarities
and differences among vending machines and to make use of that knowledge each time
you build a new one.

What are some of the benefits of this procedure?

Savings in design, savings in manufacturing, aesthetic uniformity, etc.

When you are finished, answer the following questions:

Could you use megaprogramming concepts to help build vending machines?

Yes. There is enough in common between vending machines, yet enough differences, that
it makes sense to study their similarities and differences.

What would the domain engineer do in this domain?

The domain engineer would create reusable vending machine components and documents
that describe how to use those components to build vending machines.

‘What would an application engineer do in this domain?

An application engineer would talk to a customer and use the products created by the
domain engineers to define and validate requirements that met the customer’s need, and
build a vending machine that satisfied those requirements.

Overview of Megaprogramming Course: Unit 2. Concepis of Megaprogramming, Workbook

2. Discuss the robot problem from Unit 1, Problem 4.

Make a list of common jobs and tasks that the three robots in Unit 1, Problem 4
needed.

Make a list of specific jobs and tasks that niot all the robots needed.

The answer to these two questions depends on the students’ answers to Problem 4 in Unit 1.
However, they might observe that all the robots move, and they search for some type of
object. The type of object, and the robot’s response to finding it, are two things that vary
among the three robots.

TEACHER NOTES FOR HOMEWORK

1. Consider the following—are they domains? Why or why not?

The process of applying to college

Yes. Colleges usually ask for many similar types of information on their application forms,
yet there are enough differences that you could not use the same application at more than
one school without any changes.

The process of proving equations

Yes. You follow similar steps in solving any eguation. However, the order in which you
follow the steps and the exact steps you follow will vary from equation to equation.

The process of school bus scheduling

Yes. School bus scheduling will have the same coordination and logistics problems from
school 1o school and county to county. However, there will be enough differences (e.g.,
number of buses, size of district, etc.) that you could not use the same school bus scheduling
system for every school.

The process of transportation scheduling

No. This domain would be too large to justify establishing a domain. There are similarities
between different types of transportation; however, there are too many differences from one
transportation type to another and not enough similarities that it will not pay to generate
and use the domain.

2. Describe a domain in today’s world of teenagers. List the similarities and differences in your
domain.

The answers for this question will vary. Look for a domain that has enough similarities
between the problems and solutions and significant differences that it would make sense
to establish and use a domain whenever you need to generate a solution.

Overview of Megap

ing Course: Unit 2, Ci of M ing, Workbook

il

P gaprogr %,

This page intentionally left blank.

e1mpe1 ‘BupseuiBuzy uogeonddy ‘c yun esinog BuiunuviBosduBayy jo 20

AONITIIOXT
0 JIINID

sjuswaiinbai psuyep-A|asioaid woiy uogessuab uolnjog —~
uonepljep -
uoniuyep suswalinbay -
:S8A|0AUI JeY) ssaooud paulep-||am e Buimojjo} Ag padojeasp aq ued uonedsydde ue jey; pueisiepun e

urewop
S} Ul swajqoud Jayjo Wolj saoualsyip sy jo swis} Ut A|9jos paulap ag ued wajqoid e yey; pueisiapun e

:0} 8|qe aq p|noys siuapms ayl
LINN FHILND ZHL HO4 S3ALLO3rd0

"$8900.d SIU} 8sn 0} adueyd au}

186 ||,noA ‘Auoyeioqe] suy u| “aremyos joqol Buidojanap oy ssaooid deys-Ag-deys ‘premiopybiedts e moys pue
UIeWwop }0q0J JNO UO 8}esjuaduod ||, ‘Juswdojaasp asemyos Ajduwis ued suretuop moy ass §|,em ‘g Hun u|
"urewop

© JO JX8ju00 8y} Ui suopnjos pue swajgqoid Buapisuod jo soueuodwl 8y} pue SUBWIOP PadnPoAul g HUn

Noissnosia

feunyt ooy pup aumgosxf € eirgoen ‘Bunesuibul uogwonddy ‘g Jun esinoy BunuwwiBoideBep jo meienn

a X3)
0 YAINTD
opudia

Buisauibug uonesiddy € uun

—_ BojounsaL, pup sena aiomfos of € einoen ‘BuiiesuBu3z uopeoyddy ‘g yun :esuno) BujwweiBoideBepy jo A Yo
ER) X3
Jo FLINTS j
e wa|qoid e Buness Ajesioaid o awoonNo ay) ale sjuswalinbai Aym ureidxy .
uonnos ay} Bunelauab
pue wa|qoid sy} Buyels Ajasioaid :ssa00id dsis-om} e se Juswdojansp a1emyos JO UooU By} ureldxg
:0} 9|ge 8q p|nNoYs sjuapnis ay|
S3AILO3rdo
{siuawalinbai jo ist) JnoA woyy aulyoew Buipuaa e ejesausb Apogawos pjnoy ¢wse|qosd
auyy jo syed Aue ssiw nok pig ¢wajqold ayl aress Ajas1dald noA pip ‘esiolexa aulyoew Buipuaa syy o4 e
SNOILOVHIINI IN3ANLS

‘Buiwwrelboidebaw jo swisy ul ‘uoysenb siy; alojdxe
s,197 juesw Ajeas (uonnjos e Bunessusb pue wejgold sy Buness Ajasioald) saniAlloe oM asay) op JeYm
*sjuswalinbal auyap am uaym ssioaid aq am jeys juey
-lodwi s }I 'L HUM Ul MeS 8m SY "UOIINIOS B 1o} sjudwalinbal ay} sauyap wajqold e Jo juawalels asjoaud y

"spuiw Jno u) sjesedes sued om) asay} daay pinoys s\ ‘esemyos
dojansp am se suonnjos pue swajqoid Jo suia}l Ul Yuly) sAempe pinoys siasuibus uonesidde se am ‘Ajleap)
"Pip syun Jeisea ui sepis ybnoyite ‘pedojanap st a1emyos ay) Jeye suaddey jeym Moys Jou saop apljs siy)

‘(10go. sy} Aq pazijoquiAs S| co_S%w mcw Jawio}snod 8y} Jo} pajesso
swajels we|qotd ey} uo paseq wa|qoid ay} 0} Uoin|os e sajelausb Jesuibua uogesiidde sy :gdalg
*(198uibua uonesijdde ay) 0} pue WO Ylog SMoLle 9y} aousy) Spasu Jawosno au}
Joqgo. yeym jnoge Bujuosea. ul sdjay eale wejqold ay; inoge abpajmouy s Jesuibus uonesiidde syl
‘pPoo}sIapun st wajgqoud sy ||em moy jo ainsesuw e s| Ajasioaid wajqo.d sy} sjels o} Ayjiqe ay] *(}oqo.
8}9jdwoo ay} jo uoisiA ayy) Ajesioaid wajqoid s, Jawolsnd e sajels Jasuibua uonesidde ay) ;| daig e
‘(1oqo4 sy jo supno syl Aq nmN__oME%V wa|qoud Jeyy o} uoy
-Njos e 10} pasu 8y} jo uonezijeal e pue wajqoid Buysixs ue jo Buipuelsispun anbeA e yym pels siawoisn)
"SMOJ|0} sk ase—asimiayio Jo Buiwwelboidebaw Buisn—asemyos Buidojensp ui sdajs jeoidAjojoud sy

"swajgoud asoy} 0} suonnjos Buneaso pue swajqoid Buluyep
10} ssao0.d Juswdojanap a1eMyos B 0} SUOIIN|OS SNSIBA swiajqold inoge g Hun wolj sjdasuod sai apiis siy L

K NOISSNJsIa

safeuvay QBowoungzag pup Xnag asowyfos xof 2t

sinpe 'Bunceuibul uogeaddy ‘¢ lun :esino)) ButwweiBoideBopy jO meIBAD

o

E o) X

Jo9u|Buy
uones|ddy

uojinjosg
ajeiouan
iz doig

w/mWo_;omW.

wejqoid
ajels
Ajesioaud
‘p dais

<

I p— £t einyoe ‘BuneeuiBul uonwoiddy ¢ yun esInod pupwweiBoiduBepy jo A Yo

o) FOXA
0 HAUINTD

oreliia UIBWIOP B{IGOWOINE U} 0} SUONEBLIBA PUE SBHEUOWIOD 8U} Jo Mej B Utejdx3 o

SWe|qo.d JAUI0 WO SIUSIAHIP SII JO SWIB) Ul pauljep g Ued Wajqoid sUO ‘UIRWIOP B UM Teul ueidxy .
:0} 8|QE 89 PINOYS Siuspnis ey

S3IAILOAr80

(‘|oIUOD BWINJOA & BARY ||IM I BWNSSE NOA ‘0Ja)s & 8seyaind nok
usym ‘sidusexe o) ‘Mou 8jdoad JBLIO JeuM INOGE SUONALINSSE 3XEW NOA 8J8UM LUOENYS UOWLIOD Joljjoue SBWEN

SNOILOVHILN! INIANLS

(Jewoisn? eyl ey} 1onpoid pue uewop 8y} Inoge 8Jow SMOUX AreaidAy Jesuibue uoneoyd
-de ue esneceq ‘oeued 1,us) ABoeue siy|) Jeeulbue uoneoldde ue se sjoe uosiedssles ey} ‘s|iqowoine ue Anq oA USUM

‘ajdoed Jayio JO 8SOU} WOJ} Jeyip spseu uoiepodsues Jnok moy equosep Ajuo o} eaey noA os ‘AJejnqecoA e eseys op noAing
‘("019 ‘syess Jo Jequinu somodasioy ‘s[eaum jo Jaquinu) BuiyiAleAs 8qLIOSBP 0} 8ABY PINOM NOA ¢ PajuEM NoAJeUM usejdyxa noA
pjnom moy—AJe|ngeooA Jey) aJeys 1,upip NoA esoddng ‘(. oequDIel, SNSIoA ,8dno9,) AleInqed0A UCWILIOD B 8Jeys 10\ S|
ajiqouloine Ue JeUM MOUX Yloqg Jaleap ojne ey} pue noA esneoad s)I1om 1| AN 01 180 Jeym epioap NoA moy yonw Ays.d stsiyL

{‘Aren
-1qJe s1 sjeAs| 8y Buowe Jspio 8y 1) 038 ‘BujuonIpuod Jie pesu NnoA j noA s)j8} PAIY} 8Y . "SALIP |98UM-IN0} PasU NOA Ji noA sjje}
|oAS] pUODSS B 'S|qILAAUOD B JO ‘Uepas B Hon dn-4oid e Ang pinoys noA Jauieum noA sj|} [oA8] 14y 8] ‘UONN|OS JUBIRYP
© 0} peo) |IM Jey) wejqosd nok Inoge juswsiels e sjueseidal [eAs) eal) yoed 'suondo ooads Uim Jed Jendted e Auept
0} SN pes| UED 681} UOISIOSP B 'SJeD Jo4 "(ees} B Ajlenjoe Jou s,)) 'pessesdulod si 8pljs euj Uo S Jeum Jel 8]0U) SiU} op 0} Aem
BUO §1 96,3 UOISINEP Y 'sws|yo.d Buowe suonelieA jo suel ul ARols we|qo.d B oJels Urd em ‘Ulewop e puelsiepun Ajjeelemji

‘sesod.nd esJy | 1o} [esp! s Jed ejbuis ON UBd sHods € juem sieylo i 'sal|
-jwey} jney sleyo "0bJed iney sejiqowoine Ang oym ejdoed awog ‘urewop ey} Ul swe|qoid ssoloe AleA 0} MouN 8Mm sbuiyy o

"8A|0S [JED © ewnsse Asuj) jeyy wisjgoad uopeuod
-suel) B 8ARY Sajiqowoine Ang oym ejdoad |je ‘s|duexa Jo4 ‘Urewop ey} Ul swejqoid |[e Ul UOWUIOD 8q O} MOUX oM sbulyl o

19Q Ued suol}
-dwnsse assy] "Wed e S|}l YoIUMm JO Urewop ey} ‘st yeur—uwsjqoid ey} INoqe suondwNsse ufeued aieys ojdoed mowem ji 1o
-15B8 Yyonwi s1 Lejqo.d e Bunels Ajesiosid YenemoH ‘e1els Aoljdxa Jou op em BSuigiAue puelsiapun sjdoad ewnsse J0UUBI M
"snonBigquieun aq ISNW A\ ‘PJey Sl Ueaw 8M Jeym puelsiapun ued ajdoad Jeuio 1eu} 0s swiejqoid Buness Ajesioaid ‘lessueb uj

‘wey) Buole SaouesayIp PUB SANLEJILIS SU} PUEISIOpUN 6M eleyMm Juiod sy} 0} urewop
® Ul swe|qo.d (e PazAfeUE 8AEY 8M 82UO ‘UIBUIOP B0 IX8IU0D oy} Ul We|qosd e eels Ajes1oa.d ued emmoy serelsnill eplis siyL

NOISSNISIa

4

wfeuvyy Boouyy pup snay somfos of €€

e1mpoen 'BuliesuiBuy uopwoyddy ‘e Jun esino BunuweiBoideBep jo mejnen)

FJONTTIIOXT

obied |ney

swa|qo.id bunels Ajasiosald

ajewl|o v_oo wqu__o 0y

- wr__ ‘4>——

MIp uo aAlp Juswaaed uo aaup

Apwey jney

‘< oS I

sajiqowolny

Y

1 R oupay pus senxg aowps of T eingoe| ‘BupeeuiBug uogeolddy ‘g yun :esinod BunwwwiBoideBep 40, o)

S X /
0 ¥AINTD
spuplua

UIBLLOP JOC0J BY} JO} SUOJELIBA PUE SBI)I|EUOWIWOD 8Y} JO Maj e ue|dxT

urewop ay} uj swa)
-goud Jayio WO} SIaPip ¥ MOY JO SWIS] U] paulyap ag Ued ulewop e u) wajqoid sejnojped e jeyj urejdxg «

:0} 8|ge 8q p|noys suspnis syt
S$3AILO3r80

,091a}s & BulAng 1o} 8l| YOOj| 981} UOISIOBP B PINOM JeUM »
SNOLLOVHILINI LN3aNls
;wejqoud ay; ayers Ajasioald o} Mojjo} ued am ssad0.d e a1ay) S|

(‘ss0p Jes| e o0} joou sy} Wol Yyed e Buimoijo} ybnoyye ‘suoisiosp jo ies e Ay
-uapi Ajenbiun jou s80p Jes| Y ‘88.} UoISIDap passaiduiod e paje)issadau suolje}iwi| aoeds ‘g-g apiS YUIM SY)

‘(wajqoud Jey} 0} UoRN|OS k 40} sjuswalinbal sy} auysp 0} os pue) wajqo.d ajbuis e sjels Ajestoaid oy ybnous
aJe saduasaylp asay) ‘urewop e ul swajqo.d Jje o} uowwod sbuly} Jo IXauod sy} Ul pajaidisiul ing "esuas
yonuw ayew Jou Op S8oualayip 9S8y} ‘Urewop ay} Ul S}odol [[e O} UOWWOD S Jeym puejsiapun noA sssjun

swiiopad) uojssiw jo adAy ayy e
sayoJeas Y yoiym Joj Joslqo jo sdAy ayy
sojelado)1 Yoiym ul ureussy jo adAy ayl o
:UIeLIop 8y} Ul S}0¢0J JAYI0 WO} SISYIP 10qol B moy Ayipuspl ued am ‘Apejiuig
"UOHUSAIBIUI UBWINY INOYUM UOISSIW Jiay} wiopad Asy) ‘paje)s aouo :snowouojne ase sjoqod [y
‘1oelqo jo adAy swos 1o} yosess sjoqol [iy
"9AOW S}OCO. IV

:94eYS UreWOop a8y} Ul $}0qol
{e yey} sonsusorIeyd Jo sejdwexs ase BuIMO}|0} 8y | "UieWOop J0C01 JNO JBPISUOY) "S8ouaIalIp pue seijeuow
-WO9 O SUNIB) Ul PaquIosap a4 Ued 8Jemyos Jo suleluoq "0o} ‘sajiqowoine ey} Jayjo sufewop Apnis ueo sp

/ ZO_mm:Ow_n\

sty Boounpeg pup snay aomgfos xf Ve einjoa ‘BunesuiBug uogesiddy ‘e Hun :esino) BujwwwiBoiduBeyy jo meiaienQ

I fo)) € §
0 ¥NIINID
orupliA
syoelqo sjoalqo
dn yo1d j,uop dn yoid
uawdinba Jysodap \
ajue||IdAINS - - - |eJdulW uosiad hmz__
mmﬂozw wm:mu asieds
Buipjing elpunj umo_p_
e :o._mw%w :ohcom\w yoseas
S10q0Y

("1u09) swa|qold buneis Ajasigaid

/

/

3

1 ABoouyay pup 2snd 21omyos 1of S einyoe7 ‘Bunsau;Bug uogeolddy ‘€ yun esnod BujwwwiBoiduBep j0 « Yo

) X7
(] xm...m_ﬂ.mu
A sjuswaJinbai Jogqol Buneslo Jo} ssaooid ayj uleldx3y e

:0] 8|qe 8q p|noys siuapnis ayl
JAILO3rgo
{PaIoplo 8Je SUOISIOBP 8y} MOY Jajew)l seop ‘oaisls © BuiAng usym o
SNOILOVHIINI LNIANLS
Jwajqosd ayy jo Buipuelsispun anfea feniul idy} 18awW Ajjeal sjustualinbal 8yl jf MOUY SIBWOISNO Op MOH
‘papaau sauslieq jo Jaquinu ay} 1oaje (1M SIyL LAauyl ae Areay MoK juoissiu abelane ue uo Aued
0} pajoadxa Jodqol 8y} st sjoslqo Aurw MOH , “quawbpnfbuesuibus, esnisnw Jasuibus uoleoydde ay] (sal
-1a)eq JO Jaquunu “H°8) SJ8YI0 O} SIoMsUE 8l MOUY jou Rew Jawolsno ay] “(urens) “B8) swos 0} siemsue
U} SMOU SABM|R JBWIOISND B | {SUOISIOSP 853y} O} SIemsue 8y} Ino pulj 1osul Huas uoljesijdde sy} s8op MOH
-$5900.d B OJUI PAISPIO 8Je SUOISIOBP Buj) ‘UOSEa) SIU JO- *apew aq 1SN UOisIoap alj Jsylaum UBAS JO ‘suoisioap
uanbasqns Jo} pifeA ae Jey} siemsue jo abuel ayy aye Kews uoisioap 8UO 10} UBAID Jamsue ay} ‘SPIoM Jayio |
15840} € Ul ajesedo jey)
sj0qo1 Joy 1deoxa ‘(Bezbiz jo deams) ABajens Bulyoess 1s8q 8Y} MOUX UIELLOD SU) ypm Jeljiwe) 8jdoad e
‘Ryoedes Buikires Aue pasu j.uop dn wauyy yoid 10U INg| $108(C0 10} UDJBSS O} S| UOISSILL 8SOUM SI0QOY «
"pIpUN B U1 8Yesedo Je sjoqos se sjoslqo jo sadf} swies ay} 4o} yoreas L,uop pjey e Ui spelado Jeul S1oqoy .
149410 yoea adushjjul SUOISIosp sy L
‘safje
-UOWIWIOD 8Y} pue)sIapun NoA ssajun sueaw jeyiieum|isi Ajjea13,ueo nofng ‘suoisenb aAoge By} JOf SieMS
-ue JO 13s pijeA e si 52 ‘002 ‘uibuo syl ‘sak Yoy ‘obelenr‘deams ‘1s810}, ‘9ouRISUI 10 "UlRWOD B JO IXSJU0D
ay} Ut ueaul ASU} yeum BUIMOU)| INOYYIM SUOISIOSP JO 188 B JO BSUSS 9L J,UBd noA ey} SjoN ‘sjuswasnbasl
10 198 819|dWI0D B S| JNS8] BY] "SUOISIOBP 9SBL} SA|OSSJ O} SIBWIOISNO YIIM SHIOM JesulBus uoneoijdde sy

Jposu Il |jm saueneq Auews MOH '8 JyoJess i jiim sioslqo jo adAy yeum so4 v
iAureo oy sjqe aq } pinoys spoaldo Auew moH "L ¢1s810) 8yl s| 8susp moy “1salo0} e Buiyosess s il ‘e
idn pua } pinoys alsym ‘9 Jurella) ayy yosess ¥ pjnoys MoH ‘2

(wiay) spuy Yt se syslqo dn sioid ¥ pinoys s ¢ 9te1ado j0qol ey |lim uresssy jo adfyreymu) |
:SUOISIOSP JO Jaquinu ajuy e Buijew o} sjoqol Buieald paonpal
aABY aM ‘SBIGOWOINE Y)IM SB SN["UIBLUOP 10g04 JNO Ul $}0G0J J0} sjuswaJinbai Buneaso Jojssedoid e sisiy)

/ NOISSNOsIa

’ ! ‘08, BujwweiBoideBe AsO
safruvyy ABoroungros pus snay uonifos ief S € 1Moo ‘BunesuiBuz uoneoyddy ‘e Jun :esinoD Buy W 1O MejAIBAD

uonnjos sjeseusy |

Z dois Jeauibug uoneoijddy
so|laned jo
uolyisod Ayoeden JoquinN
Bupug asooyd J Bujliie) asooyn |IN.|J asooyn j
‘9 L ‘8 hm
Aysuag ABayens siswoisn)
jsalod yoleas
asooyn [€ asooyn - i A m
€) 9dAL
59,01 000 2dAL : upeLis, |
100[q
s109{q0 | mwoo_.mu < mmmﬂ.._o
J} @sooyd .
'S L4 woajqold aels Ajasioaid :1 daig

J0QOY B 10} wd|qo.id buneis Ajasidoaid

/

. KBopounpag pup xnay owios xf € einoe7 ‘BupseuiBuz uoneoyddy ‘e yun :esino)d BujwwwiBoideBey jo A Yo

E5) XT
o
-. BunesuiBua uoneoiidde ul sjuswannbai Bugepljea Jo 8jos 8y} puejsiopun
:0} 3|qe 8q p|nNoys sjuapn}s 8yl
3AILO3rd0

‘wajqoud yeys disy [m siuawalinbal Sugepiien ¢op
noA pjnom Jeym iSNIddVH SIHL ¢peiuem Asyi yeym Ajjeas usem 3 1ey) puly Asy) 1dieoal uodn ‘usym
sjoe} weiboid aremyos e Jo Jusudo|anap Joj uoliiw OL$ Buiked Jawoisno e moy auifewl noA ue)

SNOILOVHALNI IN3IANLS

Zuonnjos e ayesauab
o} jesuibua uonesijdde ay) 10 Aem 1sad syl S JeUM 1091100 ale sjuswalinbai ay} SHuIY} Jowolsno ey Aeqo

*(sse001d 8y} jo uoiuod Bupjew-uoisioap ayy o} yoeq Buipes| moire ay}) suoisiosp uleuso
»uiyiaa o} spasu Jeauibus uonesijdde sy} ‘pijeA jou s) wajqosd ey} Jo Juswsiess s Jaaulbue uoieoljdde ey J

"uoISSIW S Wioped ueo Jogol ayl Jayiaym ajejnojes o} uolidwnsuod Aiaied s,10qo) e saquos
-ap yeys uontenbae ue Buisn Aq seuspeq Jo Jaquuinu ay} sje|noled ybiw sisauibua uoneo)dde ‘ejdwexs o4
"pasnh Usyo aJe s|apow [eonAeue pue uole|nwis ‘senbiuyos} jo Alauea e Aq auop s) sjuswaiinba. Buepifep

“ULI0} pajepljeAucU ‘sjelpalliajul Ue aAey sjuswalinbal sy jeyy
SMOUYs apiis SIY] ‘sjuawannbaijoqos sy si dais ,wajqoid atelg Ajasioaid,, 8|oym ay}jo Jnsal ay} ‘a1ojec sy

£ @SN 0} SJUBM JBLUO]SND S} 3JaUM 1S810} dY} Ut uoissiw si wioped o} salsieq

ybnoua eAey J0q0J 8Y} $80Q ¢ SPaSU JBLIOISNO 8y} UoIss|W sy} wiopad Ajjeas joqos 8y} seop ‘souelsul 104
‘pepusjul JaWwoISNo ay} Joineyaq ay) ssaidxa Ajjeal sjuswalinbai syy ains sexew sssuibus uoneodde ey |
‘sjuswalinbas Bunepifea spnjoul 0} wajgoid e Bunels Ajasioaid 1o} ssadoid ay) Jo MaIA Jno abirejue am

‘(9-1 opiIS 88s) anisuadxaul AjaAiye|al s sious Buixy sjiym ‘Apres siyy op o uepodwl s 3 ‘wsjqosd s, Jawoisnd
ay} ainjdeo Ajjeas sjuswaainbal ey J1 Mouy| 0} spaau JasuiBus uoyesijdde sy} ‘uoiinjos e Bunessusb alojeg

‘$5800.d a1eMYOS aY} OJul UoHEpPIjeA S8oNpOoAU| 8PS SIYL

/ NOISSNJSIa

safsuns ABoroingog pup xnay aiomyfos 1of I 1o ‘BuyueeuiBul uoneayddy ‘¢ Jun esinod BuuweiBoiduBep jo meinienp

o) XT
0 yIINTD
ojuidna

uopn|og 8jeIauUdY)
2 deis

2552_:0.3_ .: .
ajeplieA oo,

TTILEMEN

SV I
wajqoid a1e1s Ales|oeld i1 deis

sjuawalinbay bunepijea

J

y

o Aogoungal pus senng sewsfos of L€ eimoen ‘BupesuiBuz uopeoyddy ‘¢ Yun :esinoD BupuweiBoideBey jo . D

o) X /
0 NAINTD
opupsia
uolnjog e
Bunesauay) :asemyos Guidojansp ul Buussuibua uones)dde jo dais puooaes 8y} jo ssodind syj utejdxy

:0} 9|ge aq p|noys siuspnis sy
JAILLO3rd0

Jurewop ejiqowolne ay} Joj ¢ ulewop auiyoew SuipuaA 8y} Jo} }1om ssed0id Siy} PINOM MOH
SNOILOVHALNI LN3ANLS

‘Ajjeoiyewoine asemyos joqod pjing o} syonpoud Buusasuibus
urewop Buisn jo sejdwexs a@es ||,am ‘g Jun 1o} Aiojeloge| 8y} U ‘v Jun Ul 88s [|.am se ‘Buisesuibus ufew
-0p J0 8j0J 8y} S J—a|qissod si siy] ‘pajewoine Aja}ajdwod aq pjnod uoiisodwod pue uolos|es ‘swejgoid
YoIym eAjos O} pepasu aJe sped Yyoiym soueApe Ul ino ainby pinod suoswos ji ‘os|y (‘way) 81eald o} pasu [|im
Jasujbue uoeoijdde sy) ‘ai0jeq }INg Usaq },UsAet ey} Sainjes} YIIM Joqo. B SJUBM Jeloisnd mu:_v ‘a|gejieAe
aJe sped ying Aisnoinaid ybu ayy ji—sued Aue pjing 0} paau uaAs juom Jaauibus uonesiidde ayy ‘Ajeap)

“Hing si joqol ey} ‘sped asoy) sesodwod Jasuibua uopesydde ay; 8ouQ

"Jjoqo1 yey) pjing o} spaasu Jesuibua uoneoidde ay) sped jo s ayy Ajuepl o}
yBnouas asioa.d osje ase Asy) sueaw yey) 1oqol fejnogred e Ajiiuapl o) ybnouas asioaid ale sjuswalnbasay)

{sued alemyos pue sued arempley 10q J0} SHIOM S| "10qo. & ajealo o} wayy Buisodwon ‘2

*(1,us30p p|aYUIod B Ul }0qo1 B g ‘wyiiobie BuipioAe-y%o0. e spaau sAemje eipun} e
uljoqou e ‘ssedwod e pue Josuas }08lqo ue paau sjoqol |je ‘adoue)sul Joj) sped Aessaosu ayy Buijosjeg |

:Aq 10qou e p|Ing ued Jeauibus uoneoldde ay; ‘s|qejieAe ale sued soulg

"'sSpaau Jawoisna ay} joqod Jejnoiued ayy Aq papaau sued
(2) snid urewop ay; u1 sjoqoi |je Aq pepaau sped (1) :sued jo sadA) omy jo Bunsisuod se J0qo 8y} Jo Julyl

‘sjoqoi pjing o} (Buneauibus urewop woyy) ajge|ieAe aq pjnoys syed pjo suesw jey | ‘siswoishd snojaeid
Jo} sjoqos swos }jinq Buiaey ‘urewop 10qo. 8y} spuejsiepun Auedwod s Jasuibus uopesidde sy} swnssy

‘pesnal 8q Ued a1eMyos
Bunsixe moy smoys osje }f ‘sjuawaiinbas woy suonnjos Bunesausb ui sjdacuod utew sy} SMoYs aplis Siyl

/ zo_wmsum_n\

ofnoy, oy, pus snay omios of L€ 91moe ‘BupesuiBuz uogeoyddy ‘g yun esinos BupuwwiBoiduBep Jo MSINEAD

T, TOXT
O HIINTD
opupdia

Huueauibuz utewoq wouy sued

s10qoYy dy10ads sjoqoy liv 0}
10} papaaN sued uowuwo] sued

sued sued
esodwo) 109198

sjuawasinbay o

10q0Y q@

uojinjos
ajelau’n Y
iz daig E_Mmu
. Alesjoaid
1} days

uonnjos e Hunesauarn)

Overview of Megaprogr: Course: Unit 3, Application Engincering, Workbook

UNIT 3: APPLICATION ENGINEERING

SUMMARY
Application engineering involves:
* A customer who has a problem
¢ An application engineer wiro solves the problem
An application engineer solves the problem by:
1. Understanding and precisely stating the problem AND

2. Generating a solution based on the problem statement

Customer’s Step 1:

¢ Step 2:
Problem P’g:a'f:w Generate Solution
Statement Problem Solution

STEP 1: PRECISELY STATE PROBLEM

To understand a problem, it is easier if the application engineer understands other related problems:
* What the problem has in common with other, similar problems
¢ How the problem differs from these other, similar problems

An application engineer precisely states the problem in terms of the dcmain by:

* Deciding how the problem differs from other problems in the domain. These decisions will
require engineering judgment in addition to cold, hard facts.

¢ Validating the problem statement (i.c., the requirements) to make sure they precisely express
the behavior the customer intended.

The following decision trees show part of the decisions needed to identify how problems differ in the
automobile and robot domains.

Overview of Megaprogs ing Course: Unit 3, Application Enginecring, Workbook

Example Decision Trees for Precisely Stating the Problem

Automobiles Robots
haul haul haul search searcha searcha
cargo tamilies self a forest tundra building

sparse dense average

drive on drive on
avement dirt .
P liter person Mineral gyryejllance
deposit gquipment
live ina livein a \ m /
hot cold ick u S o
climate climate gbjectg don’t pick

A

STEP 2: GENERATE SOLUTION

The application engineer then generates a solution based on the precise problem statement from
Step 1. To do this, the application engineer uses the application engineering environment set up by
the domain engineer. This environment contains:

¢ Software components needed to generate a solution to a problem in the domain. These
components include:

— Components that are common to all solutions
— Components that solve only specific problems
¢ Help for how to put all of these components together to form a solution.

The following figure represents what happens in the two steps of application engineering.

Qverview of Megaprogs ing Course: Unit 3, Application Enginecring, Workbook

APPLICAT} NGINEERING:

Customer’s Problem Statement

Step 1: Precisely State Problem

Precisely State Problem

- Validate
Ce Requirements

°
e
® o .
Soae®

Step 2: Generate Solution

Compose Parts |

Parts from
Domain
Engineering

0

Solution

Overview of Megap

-

ing Course: Unit 3, Applicalion Engineering, Workbook

This page intentionally left blank.

Overview of Megaprogramming Course: Unit 3, Application Engineering, Laboratory

UNIT 3: APPLICATION ENGINEERING
LABORATORY

PART 1: BACKGROUND

In this laboratory, you will practice application engineering. Imagine yourself to be an application
engineer who works for URW. Three customers approach you. Each has different needs:

1. Customer 1, a farmer, owns a large cornfield and has trouble finding time to harvest it. She
wants to know if you can provide a robo: (hat will harvest her corn without human supervision.

2. Customer 2 is from the Alaska Naiional Guard, which is constantly rescuing people who
wander too far afield in the tundra. Mounting a rescue party is time-consuming; people have
died while the members of the party were gathering. The Guard thinks having robots ready
could eliminate these life-threatening delays.

3. Customer 3, from the National Park Service, is concerned about growing amounts of litter in
national parks, and wants to know if you can provide a robot that can pick up the litter.

These three statements correspond to customers’ vague understandings of their problems and of
potential solutions. Your task in this laboratory is to help these customers understand their problems
fully and to provide them with robots that solve their problems. To assist you in this, we have provided
you with a tool that automates some of the application engineering. Part 2 describes its usc.

In brief, you will be asked to generate the software for a robot. You will do so by following the
application engineering process for precisely stating a problem, which you saw in class. Some of the
decisions you must make can be answered from the three statements above. Others may require
clarification from your customer. Your instructor will act as the customer, answering questions you
might have on the requirements for the robot. Keep in mind, though, that a customer does not
necessarily know everything. As an application engineer, you are expected to use your own expert
judgment when your customer does not know what choice is right.

PART 2: EXERCISES

1. CORNFIELD ROBOT

URW manufactures robots that can harvest corn. You must act as an application engineer and help
solve your customer’s problem by resolving the decisions in the domain. By doing so, you will create
a model of a robot that harvests corn. You can use this model to generate the software that controls
the robot. However, you cannot just generate any corn-harvesting robot. In the first place, your
customer has a specific requirement: she wants the robot to end its mission at its point of origin. In
the second place, she cannot spend more than $13,500.00. The robot you model must not exceed this
price. Better still, it must be the least expensive robot that can do the job.

You will be informed of the robot’s price as part of validation. However, you should know that two
factors determine a corn-harvesting robot’s price. The first factor is the maximum number of ears of
corn it can carry. URW offers its customers robots that carry between 50 and 500 ears, in muitiples

Overview of Megaprogramming Course: Unit 3, Application Engineering, Laboratory

of 10. (The decision to carry 53 ears therefore results in a1..00t that costs the same as one that carries
60 ears, although the former robot will still pick up, at most, 53 ears.)

The second factor is the number of batteries with which the robot is equipped. All robots have at least
one battery. Each extra battery costs money, but increases the distance the robot can travel. To
estimate the minimum number of batteries needed, press the F1 key when you are asked to make the
decision on the number of batteries.

Question A. Find the most appropriate robot for your customer. Do so by repeating the process of
precisely stating the problem, varying the decisions until you believe your model of robot is right. Use
the following graph to correlate the cost of each robot to its carrying capacity. What trend do you
observe?

Cost of Robot

Carrying Capacity of Robot

Question B. Generate and execute the sofoware for three robots: the one you described in Part A, the
one with the minimum carrying capacity, and the one with the maximum carrying capacity. Record the
time needed for each one to execute. Which takes the least time? Would you have created a different
robot for your customer if time for harvesting had been her highest priority?

2. RescuinG Rosot

Generate a robot that meets the needs of your second customer. What decisions related to choosing
the mission are clearly invalid? Why?

Run your robot several times. Notice that there is more than one tundra for your robot to search.
Compare their characteristics. Which one requires more energy? Would you recommend that your
customer equip his robot with enough batteries to handle either case, or do you think your customer
would be satisfied with a less expensive robot that could only handie the low-energy case?

Overview of Megaprogr ing Course: Unit 3, Application Engineering, Laboratory

3. LiITTER-GATHERING ROBOT

Generate a robot that meets the needs of your third customer. For this customer, you wili find that
you need to try more than one robot to determine which one is best. The reason is that URW has two
searching strategies for robots that operate in a forest. One is to “sweep” back and forth, horizontally;
the other is to zigzag. Which is more effective depends on the forest in which the robot is operating.

Precisely state the problem for this robot. Use the results to fill in the following table:

Density of Cost of Robot
Trees in Forest Search by Sweeping Secarch by Zigzagging
sparse
average
dense

What do you observe about robot cost versus forest density?

Overview of Megap ing Course: Unit 3, Application Engineering, Laboratory

PART 3: USING THE APPLICATION ENGINEERING ENVIRONMENT

This part of the laboratory describes how to use the application engineering environment for
specifying and generating robot software. Your instructor will tell you how to invoke the environment.
Once you have done so, you will see the following menu (the main menu):

APPLICATION ENGINEERING FNVIRONMENT
FOR
ROBOT DOM.

1) Precisely State Problem
2) Generate Solution
3) Execute Solution
4) View Generated Software

Select an item:

You will follow the application engineering process by selecting each of the first three menu items, in
the order listed. Item 1 assists you in precisely stating the customer’s problem—that is, decision
making and validating the problem statement. Item 2 generates a solution based on your statement
of the problem. Item 3 allows you to simulate execution of a robot, using a modified version of the
Karel executor program (please note that the programs you generate will not work with the Karel
compiler or executor you have used previously). Item 4 lets you see the software you generate using
Item 2.

To select a menu item, type the number of the item, followed by the ENTER key. If you need help, press
the F1 key. You can use the backspace key to remove the last character you typed. When you are
finished, press the F2 key to exit. (These statements apply throughout the application engineering
environment.)

PRECISELY STATING THE PROBLEM

Selecting Item 1 from the main menu gives you the following menu:

PRECISELY STATE PROBLEM
FOR
ROBOT DOMAIN

1) Make Decisions
2) Validate Statement of Problem

Choose a step:

Use this menu to make the decisions needed to identify a robot that meets a customer’s needs (Item 1)
and to validate the decisions you have made (Item 2). Once you have performed these two steps, press
F2 to return to the main menu.

MAKING DECISIONS

Selecting Item 1 from the menu for precisely stating problems lets you step through the
decision-making portion of the application engineering process shown in class:

Overview of Megaprogr ing Course: Unit 3, Application Engineering, Laboratory
1. 4. 5.
Choose | Choose Choose if
Terrain » Object > Objects are
Type 5 3 Type to be Carried
Choose Choose
Search > Forest
Strategy Density
8 7. 6.
N Choose Choose
Chaose Number Carying [€ Ending
Capacity Position

Robot
Requirements

You will be presented with a screen divided into three windows. The upper left window shows the
decision you are making and the values you can choose for that decision. The upper right window
shows all decisions, including the values of those you have made so far. Each time you make a decision,
you will see the implications of that decision in the lower right window.

You will make the decisions in the order shown in the picture. In most cases, you will be given a menu
and asked to choose an item. Enter the number of the item. For Decision 5, you will be asked a
yes-or-no question; give the full word as an answer, not just Y or N. For Decisions 7 and 8, you will
be asked to enter aninteger value. Remember to follow your answer by pressing the ENTER key. When
you have made all the decisions and think they meet your customer’s requirements, press the F2 key.
You will return to the main menu.

You can abort the decision-making process 1y pressing the ESC key. If you abort the decision-making
process, you must make all the decisions again.

You can use the up and down arrow keys to move among the decisions. You can use this feature to
examine subsequent decisions you must make or to change a decision you have made. Keep in mind
that you must always make decisions in the order shown on the screen in the upper-left window. If you
change a decision, all decisions following it need to be made, even if you already made them.

Each time you make a decision, you will be shown the implications of that decision. These implications
are presented in terms of how they affect the robot’s hardware and software. You can feel free to
experiment with different combinations of decisions. You should be able to see how different customer
needs result in different robots.

When you make Decision 8, you will probably need help estimating how many batteries your robot
will require. Press the F1 key, and you will be shown some values. Bear in mind that these are
estimates. Depending on the nuances of the terrain in which your robot operates—specifically, the

Overview of Megaprogramming Course: Unit 3, Application Engineering, Laboratory

distribution of objects and obstacles—your robot may actually need more or less energy for a
particular mission. Keep in mind the consequences of failure as you choose the number of batteries.
A robot that runs out of energy before picking up all litter is a nuisance. A robot that runs out of energy
before reaching a stranded party of hikers can have tragic consequences.

VALIDATION

Once you have made all decisions, you are ready to validate your problem statement. In fact, much
of the validation is already done. During decision making, you could not state a carrying capacity for
a robot that does not pick up objects—the application engincering environment will not allow it.

However, you might still have made mistakes. For example, you could have misunderstood your
customer’s requirements and how they relate to the decisions. During validation, you are asked to
review the decisions you have made. This is the time when you should make sure they are proper. To
validate your decisions, select Item 2 from the Precisely State Problem menu.

During validation, you are also told how much the robot will cost. Unless your customer has a very
deep wallet, you should check to make sure that the robot’s price is within the customer’s range.

If you decide that your decisions are improper, you can easily revise them. Exit validation, and choose
Item 2 (Make Decisions) again. This time, you will see the decisions you made previously rather than
a set of decisions waiting to be made. You can use the down-arrow key to move directly to the
decision(s) you want to chang >.

When you think you have a valid set of decisions, press F2 when you see the Precisely State Problem
menu displayed. This will return you to the main menu.

GENERATING A SOLUTION

Once you are satisfied with your statement of the problem, you can generate a solution toit. Just select
Item 2 from the main menu. The program will choose all the correct parts for your solution and
assemble them into a working program, which it will then compile for you. If you would like to examine
the software you generated, select Item 4 from the main menu. You are now ready to simulate the
execution of your robot.

SmmuLATING EXECUTION

Choose menu Item 3 from the main menu. This invokes the modified Karel executor mentioned
earlier. Unlike the simulator you may have used, the program to execute and the map are chosen for
you automatically. (After all, you wouldn’t want to run a robot meant for a cornfield through a forest!)

Prior to execution, you will be presented with a set of questions that control how much information
you see during execution. Be aware that this information, although interesting, can add up to 15
minutes to execution time. Moreover, you do not need it to complete the laboratory. You should opt
not to display it if you are pressed for time.

10

Overview of Megaprogr ing Course: Unit 3, Application Eagineering, Laboratory (Teacher Notes)

UNIT 3: APPLICATION ENGINEERING
LABORATORY

TEACHER NOTES FOR LABORATORY

Comment: This laboratory lets students use an application engineering environment. The
environment implements the application engineering process for the robot domain covered in the
Unit 3 lecture.

The environment plays down the role of programming. Students create programs, but not as they have
previously. Irstead, the environment automatically creates the software based on a problem
statement the student provides. Theoretically, students can perform this laboratory without ever
seeing any software. The environment contains a tool that lets them do so; this emphasizes that
software is necessary to the robot but that it can be developed in more than one way.

What substitutes for programming is:

* Eliciting and understanding custoiner requirements and elaborating them in terms of the
domain problem space. The result is a precise problem statement.

¢ Quantitative and qualitative analysis of requirements to determine satisfaction of customer
needs.

* Simulation as a means to validate customer requirements.

The second item is most significant and probatly less intuitive to students than the others. Students
are asked to study problems and certain properiies of solutions purely in t=rms of domain problem
space concepts. They are not allowed to think in terms of primitive Karel instructions or even
algorithms. They must act as application engineers, not programmers. By having them do so, you can
demonstrate to them that programriaing is only a means to an end, not an end in itself.

1. CornFIELD RoBOT

Answer to Question A: This question asks the student to analyze a problem without first trying to
generate a solution to that problem. The application engineering environment presents all the
information the student needs. The student must first precisely state the problem, selecting “field”
as the terrain; this fixes the decisions on search strategy and object type and obviates the decision on
forest density. If any students wonder why, you can cxplain it to them as decisions already made by
the domain engineers:

* In fields, URW only knows how to build robots that harvest corn. It doesn’t possess the
technology to build robots that mechanicaily harvest, for example, tomatoes.

* The domain engineers’ studjes have concluded that sweeping is a more efficient strategy than
zigzagging when harvesting corn. (Real harvesting machines work this way.)

The student must choose the mort appropriate robot. The assignment defines this as the robot that
costs least, but can still perform its mission. Since carrying capacity and number of batteries are the

1

Overview of Megaprogramming Course: Unit 3, Application Engineering, Laboratory (Teacher Notes)

two factors that determine a robot’s cost, the student must experiment with variations of these
quantities to complete the assignment. The students will simply have to try several values of carrying
capacity. They can determine the number of batteries through the help facility (available by pressing
the F1 key). During validation, they can obtain the cost of the robot they have modeled. Using this
information, they should create a graph similar to the following:

15,000 1 a
14,800
14,600
14,400
14,200
14,000 e
13,800
13,600
13,400 -
13,200 -
13,000]
12,800
12,600
12,400
12,200
12,000- T —r—— ¥ T T T T T T T =T T

40 80 120 160 200 240 280 320 360 400 440 480 520

Carrying Capacity of Robet (Ears of Corn)

J

Cost of Robot (Dollars)

Inform the students that they wilt need some strategy for choosing carrying capacities, unless they are
so motivated as to try all 451 possible values. Note the trend of cost increasing as a function of carrying
capacity. This should motivate them to try a binary search strategy. Binary search by itself is not
adequate, because the robot’s cost does not increase monotonically as a function of carrying capacity,
but it is a good start.

For this mission, the robot costs least when it~ carrying capacity is 60. Here is the reason why. In the
cornfield, each location contains one ear of curn. Therefore, each row has 30 ears. Any multiple of
60 minimizes the number of spaces a robot must move to unload its cargo and return to continue
harvesting, since it always fills its bag when 1L is against the western border. A value that is not a
multiple of 60 would require the robot to move west as well as south as it returns. Each move consumes
battery power, necessitating extra energy; since multiples of 60 minimize moves, they are preferred.
Note that the robot will make fewer moves if its carrying capacity is 120 instead of 60, and indeed will
make the fewest moves ifits carrying capacity is 449 (the number of ears of corn in the field). However,
€xtra carrying capacity costs money, and carrying 400-plus ears increases the robot’s weight enough
to cause it to consume energy rapidly. This in turn requires extra batteries, driving up the robot’s price.
For these reasons, 60 is the optimal carrying capacity.

This fact—that robots in cornfields behave best when their carrying capacity is a multiple of 60—is
an excellent example of the type of knowledge possessed by experts in a domain. That is, it is something
an application enginecr would know and would automatically apply when approached by a customer.
This knowledge would be gained by experience, through trial and error. Deriving it mathematically
is difficult; in many domains, it is impossible. Eventually, application engineers feed this type of

12

Overview of Mcgaprogr ing Course: Unit 3, Application Engineering, Laboratory (Teacher Notes)

trial-and-error experience back into domain engineering, where experts incorporate it as a heuristic
in the application engineering environment.

You can discuss this with students. Ask them for commonplace but significant knowledge in other
domains. A few examples: does your automobile owner’s manual tell you how to park your car? Few
do; of those that do, do any tell you to put money in the parking meter? Does your owner’s manuat
say to turn off your ignition after you park your car?

Answer to Question B: The following are some sample results:

Carrying Capacity Execution Time
(Ears of Corn) (Seconds)
50 1:00.25
60 46.14
500 33.84

These numbers were obtained running the Karel simulator on a 486-based computer. The numbers
you obtain will depend upon the computer you use. However, you should stiil obtain the same
ordering: a carrying capacity of 50 results in the slowest execution time, and a capacity of 500 results
in the fastest. Therefore, if your customer wants a robot that can harvest corn as quickly as possible,
and if money is no object to her, you should recommend that she choose the robot with the greatest
carrying capacity. The most alert student will also observe that, as a field contains at most 449 cars
of corn, the customer could save a little money without sacrificing execution speed by buying a robot
whose carrying capacity is 449 or 450 (both these robots cost the same).

To obtain consistency in the results, the students’ answers to the questions asked by the simulator must
be identical for all three trials. Be aware that the executor can run very, very slowly. It is usually best
to answer N to the three yes/no questions (see Simulating Execution on page 10), and to set the speed
to 0. You can use this as an opportunity to reenforce experimental science concepts to your students.

You are not actually running a robot; you are running a simulation. If URW were a real company, the
application engineer would run a simulation such as this to learn facts about the robot’s performance
that cannot be determined in other ways (i.€., as part of validation). This point is well-illustrated in
laboratory Questions 2 and 3, with their somewhat randomly-placed objects and obstacles. Addressing
the issues raised by Questions 2 and 3 by deriving formulas is very hard. Simulation provides a simpler
alternative.

2. RescuiNG RoBor

Answer: There is no point in deciding that a robot should pick up hikers and continue until it runs out
of energy. The purpose of a “rescue” mission would be either to transport the hikers to a safe, known
place (either the origin or the point where the entire terrain has been covered—both can be predicted)
or to stay with the hikers until help arrives. If the robot continued until it ran out of energy, the
National Guard would have difficulty locating it, so the hikers would be no better off than if they had
just stayed where they were.

This laboratory comes with two maps of a tundra. One, named tundral, is intended to illustrate the
average case. A group of three hikers is stranded more or less in the middle. The other map, named

13

Overview of Megaprogramming Course: Unit 3, Application Enginecring, Laboratory (Teacher Notes)

tundra2, illustrates the worst case. There are a total of five hikers (the maximum permissible carrying
capacity). Four are right at the beginning of the robot’s scarch. The remaining hiker is at the very end.
Suppose you opt to have the robot pick up hikers and return. The robot will consume the maximum
possible amount of energy. It must carry four hikers the greatest possible distance before it completes
its search by finding the fifth. Since carrying an object consumes energy, the robot's energy use is
maximized.

Choosing instead to have the robot stop when it locates a person creates a robot that is probably
unsatisfactory. It will find one group of hikers but not the other. This is not likely to please the National
Guard, nor is a robot with a carrying capacity so small that it returns before it finds everyone.

The purpose of this question, then, is to make sure the students study the problem carefully and truly
understand the nceds of their customer. They must pay particular attention to the following:

e Only certain combinations of ending location and carrying capability are useful for rescuing
people.

¢ The robot must not run out of energy. In a cornfield, the consequences of doing so are
annoying. In a tundra, human lives are at stake. Failure has dire consequences.

* Appuication engineers must make important choices based on their own judgement. The
application engineering environment cannot calculate the right amount of energy. It can
predict average use (note that the robot will actually fail if given the average number of
batteries needed: the hikers are just a bit beyond the midpoint, which is assumed to be
average), and it can predict worst-case use. The worst-case robot works but is very expensive.
Most customers are not willing to pay the price on the off-chance that the worst case will occur.
They want something that handles most cases. The application engineer has the moral
responsibility to present this information to the customer and to try to come up with the best
energy statement. In the laboratory, you might want to act as customer and establish an
arbitrary price ceiling that precludes building the worst-case robot. As part of the assignment,
ask the students to prepare a report of what they expect the robot can do.

One note: the simulator chooses one of the two maps used at random. In a class of 20 people, you can
be 95% confident that at least one person will not see both maps even if everyone runs the simulation
4 times. Be prepared to ask students to keep running the simulator until they have used both maps.
(The simulator shows the map’s name in the lower left window.)

3. LirTER-GATHERING RoBoT

Answer: The following table was created using a carrying capacity of 250, with the robot picking up
litter and returning to its point of origin when its bag is full. The average-case number of batteries was
used. Such a robot does not have enovgh energy to complete is mission, but the general trend
illustrated by the table does not change with the number of batteries.

Density of Cost of Robot
Trees in Forest| Search by Sweeping Search by Zigzagging
sparse $9,944.00 $11,806.00
average $10,368.00 $11,673.00
dense $10,875.00 $11,540.00

14

Overview of Megaprogramming Course: Uait 3, Application Engine¢ring, Laboratory (Teacher Notes)

Notice the difference between the columns. The cost of a robot that sweeps is proportional to the
forest density. The cost of a robot that zigzags is inversely proportional to forest density. If you
examine the code, you will observe that navigating around a tree in a sweep requires two extra moves
and eight extra turns. By contrast, zigzagging around a tree requires four fewer turns than if the tree
were not present. In theory, then, a robot moving in an extremely dense forest (or a larger one) would
do better to zigzag. In practice, a Karel map cannot contain enough trees to make this worthwhile.

15

Qverview of Megaprogramming Course: Unit 3, Application Engineering, Laboratory (Teacher Notes)

This page intentionally left blank.

16

safeunty Bojouy>sy, pup xnoy aiomgos of Y einyoe ‘BunseswiBug ulwwogq ‘v hun :esino BulwweiBoiduBep jo me|nerO

mw&mﬂmuxm /

oyuisa

pasinboe aaey Asy} s)iys BuiwwesBoid syy o) Buiwweiboidebow ajejey o
Kiojeloge] € Hun 8y} Ul pasn sjoo} a8y} BulApepun s1dsdouod ayj JO BWOS pueisiepun
:0} 3|qe 8q p|noys sjuapnis ay)

1INN JHILNI 3HL HO4 S3AILO3ArdO

“(s|1Ms BuiwwesBoud salinbas Buussuibus uiewop
‘sy Jetp)) ssejo ul pasinboe Apealje aney syuspnis auj 1eus s|iys eyl o) BuiwwesboideBaw sajejel yun sy

‘BunissuiBua uonedldde o} siejal Asy)
Moy pue s)nsaJ ay} Ajuo sessnasip }l ‘Buiiesulbus ulewop op 0} MoY JBA0D o} jdus)e JoU S0P }| 'SjuleliSuod
awi} Jo 8shedaq ‘uonejussaldal Jo sanss) spioAe Aj@yesaqijap) 'xoq joejd syl jo |[e dn usdo Jouued Jun sy

sjusuodwod [eJnosiyde 8yl e

aInjo8)ydIe UleWwop a8yl e

urewlop e ui ale swajqoid yeym jo uonduossp ayl e
ssao0.id Buusauibus uonesiidde syl

:Buiesuibus urewop
Buunp pajeaso sjonpoad Jofew ay} o} uononpoul jeig e saAIb § "xoq oelq 8yl Jo swos dn suado ¥ Jun

‘i 8sh 0] X0q)or|q 8y} apisu! S| JeyM MOouy O} pesu },ussop
JesulBus uonesijdde ay] “Jewolsno B Joj Uoinjos & Buneals uaym xoq yoejq ay} sesh sesulbus uoneoyd
-de ay) ‘(as101exa A10jRIOqE| Y} U! XOQ ¥OR|g B pash noA ‘jogj ul) xoq ¥oejd, e dojarap sissulbua ulewoq

‘asi019x9 Alojesoqe| 8y Ul pasn sjoo} ay} BuiApsspun sidaosuoo ey sequosep Jun siy)
NOISSNOSIA
/ JINN H1HNO4 40 1HVY1S

Jofeupay, ABojotya PuB 3y HoMDS Jof 544 emoa-) ‘BupesuiBul uewoq 'y Yun esinoy BuiuweiBoideBa o MeIBAD

JONTTIFIOXT
0 ¥IINTD
opupkiA

Buusauibug urewoq ¥ Mun

~

[4 eimoe ‘BuyesuiBul urewo(v yun :8sino) BuiuwriBoiduBay 0 MO

- . ABojouyz) pup #nxd 310mfos x0f
FONTTTIOXHA
o mm.mw.mu
e sseo04d Buussuibua uoneoydde ayy uieldx3 e
:0} 8|qe aq p|nous sjuapnis sy
JAILO3rg0
(‘wesnejsal
pooj-ise} e s) ajdwexs poob A1aA y) ;surewop Jayjo utjsixe yoddns sseooud pue sseooud yuiyinohoqg
SNOILOVHALNI IN3ANLS

“8u0 Is€] 81 Yyum Buipeys ‘suolisanb asay) Jo Yoea je 300| s 187

Jpamoife surens) aaiyy Ajuo azem Aym ‘souelsul 104 (SIBUIO JoU pue $}0gol BWos
apnjoui kayl pip AUM &89 PINOUS Utewop 8yl Jeym apioap siasulbue UIBWOP PIp MOY ‘ajjew jey} o4

$pPINg o} poddns ssaooud Jeym apiosp sieauibus urewop ay} pip MOH

g pjnoys wejgoud ayj sjeys Ajesioaid o} ssao0id sy leym splosp siaauibus urewop pip MoH
2,80 0} awod Asyy pip Mol “BunesulBus urewop Buunp pejesso ase yoddns ssedoid pue ssed0id
‘premiopyBiens sjoqos Buonpoid spew asay) jo asn moy pamoys Aiojesoqe) 8y |

(suonnjos syesauab pue swa|qoid sjejs
noA padjey yeys Aiojesoqe] ayp ul sweiboud ayy axif) sseooud sy oddns yey; sjoo} pefewoiny —

(suonoun} pue sainpaosoid a1emyos) suoloniisul jaiey —
:poddns ssao0id .
(aremyos j0qoi @y} pue sjoqos Bujonpoud 1o} sdals ayy) ssecoldy e
:Buninbal se BuussuiBus uoeo)dde Jo juiy) ued oM ‘alojeiay]

"X0q »oejq SIy} 8sn o} sjuspnis palinbai g yun woy Aoyeloqe] ey "woddns ssaaoad pajjeo
xoq Yoe|q e Aq psuoddns ssaosoud e ybnoy) sjoqo. eonpoud siesuibus uoneoldde jey) smoys apls siyj

/ NOISSNOsIa

sfiuniy Besouyoos pus ssnay sonsfos o SV einpe ‘BunseuBug ulewoQ 'y un esino) BuwwwiBoideBal jo meineno

FONITTIOXHT
O JIUINID
ppuilia

uoddng ssao0id

uoninjos wajqoid

| a1RIoUDD | g a1e1g
g dais Kjesioald

.} dais

laouibug
uoneoljddy

¢PaaN si19aulbuz uonedijddy
o djoH 1eym

J

. . KBonounpay pup zinay xiowyos of SV 8injoe 'BupesuiBul uewoq 'y wun :esinoD BuiwweiBoidebe jo « o
= T aONTTIEOX3 /
o xm.nmwu
i pepN|oXa 89 PJNOYS Yolym pue uiewsop e ut 8q pinoys (swajqoid ssoy} o} suoh
-Njos Y2IYM pue) swiajgosd Yoiym aulwiiep o} asn sieaulbus urelwop uoneunojul jo sadA) sy urejdxy .
10} @|ge 8q pINOYS sjuspnys ay |
3AILLO3r80
£ S80UBIBYHIP a8y} ale Jo swes ay) Aj9jejduiod sulewop Jley) aly ;(urewop Jisy) Ul ag Jim
182 JO pu JeyM ‘shieyy) pling 0} sJed jo sadA Jeum apioap JajsAiy) pue ‘pio 'SIOJO [eJsusY) OpP MOH »
SNOLLOVHIALNI INIANLS
¢ssa00ud sy ayealo sissulbus urewop sdigy
uonBWIOoUI JO HOS Jeup Kiolesode] © HUn 8y} Ul mes am ssedo.d Bujew-uoisioep auy Joj sised ayl st sty
‘sws|qodd jo saouriSUl Usamiaq Seouslalip sy} pue swajqo.d (e Buowe sanljeuowwod ay}
1aA0oUN Pue wal APnis Leo Aay} ‘UleWop auj ul 84 jjiMm Jey) sWisiqoid ey} mouy s1aauibus uewop ey} 8ouUQ

"$s8UISNY [N)SS820NS B 10} juenodwl ale suoinjos pue swajdoid yeum
Buipiosp pue siojoe} esayy BuiApnis si Buussuibus ulewiop Jo Hed "(s1o0ioey {eoiuyos] pue ssaulsng yioq aie
218} 80110U) UleWOP 8y} WO} 1B} SUOKN|OS pue swiaiqold ay} ulessuoD el S10j0e} Jo SadA} sy} ale asay |
‘Asuow o sj0] Buy
-}SOAUI INOYLIM OS 0P O} aNUKUOA UB3 SA\ "PIBH € Pue ‘IS8i0) B ‘Bipun} e uj 8jejado Jeyl Sjoqo N aA 8 «
‘(spaas sMos ey} 10qo1 € St el 8y} jo ajdwiexs ue) slosiqo soeld
1By} S10001 Joj purwap ay} ueyy sabief si s103[qo Joj Ydieas ey} Sj0qod 10} puellsSp Sy} JeUl HUIUL Sp

‘soesado)l Se Joqod B [0Ju0D 0f aARY JUPIP Ayl)l 10
-iddey aq pinoMm S13WI0ISNO JNO YUIY) am pue ‘Aisnowouoine alelado Jeui S10q01 Pling 0} MOY MOUY S\ »

:seuy Buimoyjop sy Buole yuiyl WBIw siesulBus urewop sy} ‘Auedwod J0qos INO Uj

'8jealo ued sissuibus uoy
-eoydde yeyy swieisAs jo abues sy Buipiosp Jo} sjqisuodsal ale s1sulbus urewoq ‘swieshs [eNPIMPU) 8jeald
siaaulBue uonesddy ‘urewop B ul s eym apioap oym ‘siasuibus uolesyidde jou ‘sieauibus ulewop sy

“urewWIop B Ul 8pNjoul 0} SuUolnjos pue swajqoid jeym ep1osp Asyy)
usym Japisuoo sieaulbua urewwop Jeys (UreLiop 1040l JNO JO SLLIS) UI) S10108} jo seidwexe sjuasald aplis siu L

/ NOISSNOSIa

safsunyy Bojouyoy puo ssnay womfos of SV ein; 7 'BuneeuiBug urewoq ‘v Jun esino) BuiwweiBoideBbep jo meIneAD

JAIONITITOXT
O yFINFD
pjuidnaA

pIINg 0] NOA sjuem ssoq JnoA sjoqod Jo sadA} ay|
juem siawojsnd 1noA Juiysz noA sjoqou jo sadAy ayl
Hing sey Auedwod 1noA sjoqod jo sadAy ayy

ssassod noA s10q0u Jnoqe abpajmouy ayl

ulewo(10qOoYH e uj sj 1leym
Buiouanjjuj s1010e4

~

£ MBojouypay pup ssna atomgfos sof 7V einjoen ‘BupesutBusg uewoq ‘v tun :esinod BuwweiBosduBepy jo . ETY%)

ONTTIIOXA
O JIINTD
opuRIA

S8IJI|EUOWILLIOD JOU ‘SUOLIeA UO pased sI suoisioap Bunjew jey; ureldxy
sseo0.4d Bunjew-uoisioap e Buieaso ojul saob yey; abpaimouy Jo adA ayy ueldxg
:0} 8|qe 8q p|noys sjuspnis ay|

S3ALLOArg0

& (018 ‘azis auibus ‘s100p JO JaquInu ‘@ALP |88YM-INO} ‘JOjOD “Bra) ajiqowoine ue
Buisooyd 10} sseooid Buiyew-uolsiosp e ajeald 0} pasn aq pinoo ey} UoHeWIOUI 8} JO SWIOS SIJeUM

SNOILOVHIINI INJANLS
$$s820Id e 8yeaso sn djay o} HOS SIY} JO UOIFeWIOjUl 8Sh 8m Op MOH

*SOl}I[EUOWIWIOD UO J0U ‘suojielleA uo paseq (uopjuyep
£q) s] suoisioep Bupiep "s10qoJ usamiaq sajieA Jeym sazjseydwa uopewsoju) |yl ;ujebe joquisway

‘urewop ay} jo abpajmouy| Jisy} sesswinus o} Ay Aiduis Aayy isai 1e Ing ‘Y aziuebio Apuanbaesqns isnw
Aay] -Bunjuiyl sseusnolosuoo-jo-weans Buisn sisi| yons ajea.o sisauibus utewoq Peidp.o Jou St ist 8yl

‘@s8U} Se yons s1oe} Bunsy sjgno ou aney pjnom Asy ‘ujewiop
Byl YuM Jeijiwie) e sieauibua urewo (‘awipisay sy} oy urewop sy} Buiess a1,noA ji usae asuss poob saxew
1 JO 1SoW “1o1} UJ) "UreWOp 8y} YuM Jeljiue) alam nok j1 Mouy pjnom noA yey) uoiiewsiojul Jo sdAy ayy si sty

‘MOJj0} Ued Jasuibua
uonesydde sy} yey; ssaooud e ajeald 0} Uolew IOl SiY) 8sh Jaje| im Ay “syoqol Buigiiosep Joj sseocold e
noge ‘Ajjeonewsishs ‘uoseal o} siesulbua urewop sdiay yey} uoirewriojul jo 8dA} syl smoys ‘uay) ‘splis siyL

“WISIUBYDSW UOIIOWO00] & Pasu s}o0dol jje ashedad WSIueyosall UOROWOoD0| & papasu joqol JnoA ji
ge| 8y} Ui payse ,usiam noA ‘sjduwiexs 104 “apell 8q 0} UOISIOap OU S,8J84} ‘SUoHN|os pue sws|qoud jje o} uow
-Wwoo s1 Buiyiewios j—uowwod are yey sbuiyy ayj jje sseooid siyy woly apnjoxa Ajejesadiiap Asy} "urewop
3y} Ul 8jgelieA S Jeym pue UOWWOD s Jeym uo paseq ssaocoid Bupfew-uolsiosp e ajeald sisauibus ufewoq

NOIsSsSNOsIa

fsuniy Bopouyoz pup Xnay amos of v o297 ‘BunseuiBul upwog ‘v Wun esinod BuweiBoiduBey jo meinieno

c o) XT
0 HAINTDO
opupSiA LI] ‘j

ieJpun} e Jo 9zis ay} p|ayulod e 1oadxa jou
pInoM am ‘S19430 uey} Jabie| yonw ale sujelld) awos @

‘s109[qo Jo sadA} |je sujejuod
ures49)} ou ‘syo9lqo jo sadA) ujenad sulejuod ujelisly ©

-a|qeAoww] 10 Big
00} aq ybiw Aay} ‘pauries ag jouued sjoaiqo sawog ©

-sbeq 10 sw.ie paau jou op way} Aued
10U Inq S199((0 9}ed0| 0} SI UoISsiW asoym sjoqoy @

sS990.1d Bunjep-uoisioag (10qoy)
e 9]eal) NoA sdjaH leyl uojjew.iojuj

\ y

£ Borounag, pup 2en asowefos J0f (54 o159 ‘BupesuiBug upwoq ‘v iun esinod BujwwwiBoideBep j0 N0

I o) XT
0 yAINTD
ProriA poddns ssaoosd Ul uorewolne jo ssuepodwi 8y} puelsiepun e
ssaocoid e ajeao 0} pepasu abpamoun jo odhy ay) urejdx3 .
:0} 3|qe 8q p|noYs sjuapnis ayl
S3AILOAr80
39 ¥ pino) ¢aliqowoine ue Buisooyd 1o} [edlueyoau ssaooid Buiew-uolsioap ayl s e
SNOILLOVHILINI LNIANLS
juonnjos e Buyessuab o} sseooid Buijew-uoisiosp ey wol o am op moy ‘MON
‘Apuapuadapul

aANjos jsnw Jesuibus uoneoidde oy} ‘Auagesid sasinbas jey) BuipAuy ‘|ediueyosut S ISASjRUM
op Jeindwod sy} sexyew jey} Hoddns ssevoid apinoid o} Soli leauibBus urewop ay] ‘snonbiqureun pue
Jesiueyoaw, yonw Ayeid sbuiy ssay jje apew sey 198u1Bus urewop sy} ‘Butiesulbua urewop ybnouyl

‘Apjoinb punoy eq o} Aje) a1ow a1e sioue ‘woddns ssao0.d 8y}
anoidwi o} Bunyiom (uoiesijdde pue urewop yioq) siesuiBus Auew YA SjUsUILIOD 8s8Y) UC paseq Yoddns
ssao0.d ayy enocidwi |im sieauibus urewop ey ‘poddns sse00.d 8y} UM 3I0M jou pIp pue pip jeys sBuiyi uo
s1e8uibus urewop ay} o) Joeqpaa} apinoid siesuibus uopeoyidde ay | ued Aay} se yonw se ayewoine o} Al
pinoys ssesuibus urewo('noA Jo} aremyos sy} pajesausb pue ‘sjuswialinbai inoA ayepijea noA padiay ‘1eplo
JTejnoned e ui suoisioap axeuw o} noA payse weiboid v “pajewioine sem ssao0.d sy} Josow ‘Aiojeloqe)| sy} u)

. "SONEISILL 9)elU aM Ji SISEM aM L0 SS3| aU} ‘Sjepl[eA aM Ja||Jes ay) "aJemyos
3y} JO |9poOW 8jelnode Ue ale SUOoISIoap au} Jeyl MoUY am asneseq ‘uonessuab si0jeq ajepl[eA o} sjqe sJe
3M 21048 3 Op NoA ‘UurewWwop 10401 Ino U] "Way} sreseusab nok Jeye sweibo.d inoA BunepijeA o} pasn aje NOA

(-Buniepio pijeA Ajuo auyy Jou s SiY}) "seduUBNUl 8SaY} Jo8|a) 0} palaplo S! ssao0.d Bupjew-uoisiosp eyl
‘(g uoisioagg) sallaeq J0 Jegquinu pue (¥ uoisioaq) adAy 1oalqo ay) seousnjul (1 uoisioaq) urenssl a8yl o
‘(2 uoisioe() Ayoedes Buifieo ssousnjul (g uoisioa() psiised ag pinoys spelqo Jeyisym

:ufewop j0qoJ 8y} Ul sejdwexe om}
ale aJaH "SJAYI0 8oUSN}UI SUCISIOBP SWOS ‘Urewop Aue u| "ssao01d Bulelu-uoisioap auy eje|nuiio} o} (eplis
snoiaaid 8as) §1040) JNOGe UoeWLIoJU Y} 3sh sissulbus Urewo("aJemyos ay} ajeiaueb pue ‘suoisioap
8y SJepi[eA ‘SUOISIOBP JUBAS|S) |[e @xew sidsulBus uoneoydde jey} sinsua jsnw ssa00.d 8U} ‘WNWIUIW € Y

-ssa00.d ey Jo uoiod Bunjew-uoisiosp sy Buiziseydwe ‘ssedoid e Bueslo Ul saNss| SI8A0D SPYS SIUL

/ NOisSsSNOsIa

softunig Bojouyay pup sxnzy uowgfos sof IF 9Imoe ‘BunesurBug uiswoq ‘v yun :esinoy BuiwweiBoiduBapy jo meinenp

o

AONITTIIOXT
0 NAINTD
ppuXaa

/

ajqissod se Aspa
Se 9JEpiBA ,e° """,

A o ‘e soyelsiW 3081109 Jeaujbue
uopn|os ¢ uojeoydde ayj 197
sjuswaijnbay
ajesauar) PO
g dois

sjuawaiinbay

sejiejug jo
uojjisod Ajoeden JoquinN
Bujpug esooyn ' BujAsien esooyn eco0YyD
‘9 ‘L '8
§j0q04
Buowe suoselen Risueq | [ABerens
Aq paujwsiag h“uﬂw g] uoiwes
8sooy)
pejue) odAl £ < E_Oﬂ&._w.”hv
°q o} eJs 1efq0 esooyd
n-wo_ho < esooy) ‘€
4l esooyn .
'S L4 wajqold alels Alasioald ;1 daig

wajqo.id e bunels Ajosi1o9.id
10} $S920.d e bululag

. KBolowNDL Pub 3NN WoMGOS Jof 9 e1njoe 'BuneeulBuy uswog 'y Yupy :esino) BuuweiBoiduBey jo « AO

FONFTIAOXT
[zmmm.mu

D]
e ainongs weibold B smoys ainjoajyole ue jeyy uejdxy e

ainyosyyose ue sey wesboid Aiaas Jeyy ureidxy

urewop ay} ul wsjqoid
© 0} uoynjos e ajessuab sisauibus uonesydde moy suljep 0} op Isnw Jesulbue urewop syl leyMm alelg «

:0} 8jge 8q p|NOYS Sjuspn}s ey}

S3IALLOArG0

Zeusq Aue Jo aq SIU) PINOM ¢8Jem
-}40s j0gos Bunsixa woJ) paurejdo aq Ay} PNoY WO} w09 sjuauoduwiod apod ajqesnal dUL Op 3IBYM

SNOILOVHILNI AN3ANLS

‘wesBoid a18|dwod e Wwioy 0} aindaliyose sy} ojul sjusuodwod
3y} 1} 0} MOY BquIOSep Osfe sasnpaoold uoelsusb sy (‘Buiyssess si130qos sy} yoIym 1o} 108(qo jo adA} sy o}
paidepe aq o0} peau [ImM 10alqQ s|puey ‘sduelsul Jo} ‘pajdepe 8q IsnWw ainjos)iyoJe Se ||am se sjusuodwo))
"wiaqo.d yeys o3 uoin|os e apinold o} paidepe aq jsnu slusuodwod spoa 8y} pue ainjoslyse ay} ‘wejqosd
Jejnoled e 10} ‘Moy aquosap esay] "saJnpasold uonessuab sulyep jsnw siesulbus urewop syl ‘payL

"10001 © 8jeald 0} JueMm Aay} usum
alqejieA. Wwaly aaey siesulbua uonesijdde aly} 0s SUOHONJSUl 8Oy} Sajeald Jeauibuae urewop ayy ‘weib
-oid Jejnonsed e 1o} ‘diusuoie|a.sIul 1Y} PUR ‘Papasu SUORONIISU| [a1ey] 8y} Saulap ainoelyose ay| "en}
-0y e SIU} Ul pasn a4 ued jely; sjuauodwod apod ajqesns) dojaasp Isnw siesulbus uewop sy} ‘puodss

"(1,U0p Spjel ‘s8[orISqO aABY Seipun} pue sisalo} 6 a) uopelea awos Suysabbns pue ssemyos
10404 0 81MpPnJs oised ay} Buimoys ‘Ayaselaty Buijjeo e *ainjosiiydle ue se ‘sjussaid aplis siy] "ainjoalydse
9JBMIOS € 8INjONAS € Yons {jed ap| Al soisysiorIeyo atjj Moy pue uowwiod Ul aaey sweiboud (e sos)
-18)0BJeYD [RINIONAS JeYM :uteLIOP 8y} Ul sjodol Joy swelBoud jje jo ainjonas ayijo Buipuelsiepun ue dojeAsp
1snw A3y} ‘1sii4 "uonnjos e ayessusb o} siesuiBua uoyesydde moje o} sBuiyl salyl op siesuibus urewoq

*(uotinjos e Bunelausb) ssaocoid Bunssuibug
uoitealddy ey jo g dalg aulep s1aauibua urewop moy 4o (| L -t yum Buipus) uoissnosip e sutbag spys siyl

NOISSNOSIa

safeuniy ooy puo anzy aowijos of TV e:moe ‘BupeeuiBug umwogg 'y pun esinod Bupuwe.BoiduBepy jo meuenD

s ™

opupija
09[40
8jpueH
uonenobsu 3001 peau " m%mw%%_ m
‘elpuny st UleLI} §| @ L
uonenobau 981} pesu o T -
. o ; ubuo . ureusy

urelse} eyebineu

98|081SqQ e1eliobaN
0] poau sAemjy o iy

By

3
~
N
.~
-~
~

uolssiw wiopad uoIssIN
0} pasu sAem|y e wiopad
sjuauodwo) ainmoauysiy
$9iNpad0id apoH alemyos
uolneiauar) a|gesnay joqoy

:dojoAdap }snw Josuibud ujewop ayl

UoIINjOS B Sajelaudr) Joauibu3
uonesijddy ayi moH buiuyag

/

_ RBoroungaay pup o momifos sf LV aimpe 'Bupesuibug uewoq ‘v un :esinod BunuweiBoidebap jon sAQ

IDNTTIIOXA
0 NAINTD
LT

weiBelp ainjos)yose ue uo paseq weiboud [ejejeys e sjesl)
:0} 8|qe aq p|noys syuspnis sy

JAILD3rd0
isexoq 8y} jo Wed sadA) ejep ale ‘[eosed uj juononsisul [ase) 8|Buis e o} puodseliod xoq e s30Q e

21591 J0 ‘epo ‘ubisap ‘sjuawalinbai) ainjosyyose ey} dojeasp nok pjnoys ssecoud swdo
-joASP BJEMYOS aU} JO ped Jeum Uj ;81njos}iydle a1emos & aAey Jeah siy} sjum noA weibosd Lisna piqg

SNOILOVHILNI LNIANLS

Jwejgo.d ajBuis e o} isnf jou ‘urewop sy ut wiajgoud Aue o} uopnjos e aelauab sn djay sinjoayyore
UB SB0p MOY ‘S! Jey | jufewop 30qoi sno Buip|ing Ul 8JnjoajiydJe JO UOROU S} JO 8SN 8l 8M Ued MOY ‘MON

1001 8UO SIU} Bleaid 0} NOA payse Jayoes) JNoA Ji sjlm
pinom noA yeym o} sejwis Anald Ajgeqoud s1 suoponuisu; jojas siy L “Jods Jey) woJ suinial il ‘Beq au Iiy oy Jonlj
yBnoua spuy it jj ey Aue dn yoid o1j0q01 8y sionuisul) ‘BuiBbezBiz sjium "uoloNSUL UINJaL B SB}OAUL UBY)
puUe 1S810§ 8Y} JO J8UL0D Jseayuou ay) premo} BezEiz e seyoAul sl)l :sBulyl oM} SSOP UORONJISUI SIY L “UOIS
-SIW 9y} SBALIP Jey} 8UO 8y} Sl uolonAsul urew sy | “wetbold ayy 4o oiBo) fereush ay) smoys ainjosyiyole siy L

‘(ejgepeas 8q 0} PAPMOID 00} 8 PINOM SUOHONIISUI ([Ulim
apys &) suononisul Jofew ayy Ajuo smoys apyjs sty] "(soljelt ut Arejuawituod) Jsyloue S8}0AUL UolionAsul suo
UDIUM JOpUN SSOUBISWINDIIO S} PUB (S8ulf) YoIym a3oAu! suononasul yolym ‘(sexoq) wesboid ay) dn axew
1.y} suononasul [aJey syl smoys 1 “(9160) sy mojjo} noA dijsy pjnoys siyy) Asojesoqej € Hun auy ul alessuab
0} payse a1am NoA yoiym auc ‘J0qoi Jejnaiyed e Jo ainjosliydle 8JeMyos ay} le 4oo| pajielep e si apiis siyl

"8U0 sy} o suolezijessuab pue suolelea

ale 6- pue g- sepi|s ‘weibosd ajBuis e 1o} ainjoslyore ay) Buluiwexe Aq sulbaq apijs siy | "ulewop e Joj
2IMOS}IYOTe S/EMYOS € SaulSp JaauiBua ulewop syl MOy SIUSPNIS MOYS [|Im Jey salias e sulbaq spyis sy

/ NOISSNJsia

safeuvyy Roounpoy pup anay aomios nf LY

einyde ‘BupesuiBuz uswo(‘v wun esino)d BuwweiBoideBayy jo meInBAD

HONITIIOXT
o NAINTD
ojupXijA

31|

Buuoubi Jspioq
}sem piemo)} deams

~

-

Joyy| Bunoub)
‘lepioqg yjnos
piemo} deamg

(1epioq yinos
sayoeal J0qoJ 82Uo paj[eo)

Jenl
(1s41 pajjeo) jo 8oa1d e dn yoid

uibuo jo juiod
0} uinjay

(punoy si
1oy)] Wi} Yora pPajjeo)

(in} s1 Beq usym Jo
Dai8A09 SI }S810} JO |[B USYM pajjed)

| 4o wini |

(wbLio jo juiod o) peuimal
sey 10qoJ uaym pajjes)

18| Joj Buiyooj
‘salo} e Jo

Jauloo 1seayuou

pJemo)} Bez-6i7

(1ol
10J yoseas
uibaq o} pajfeo)

uinjal pue Jap||
dn yoid :uoissip

J91117 dn s)01d 1ey]l 1sa404 ul jJ0qoy
10} 91N109HY2ly 91em}los 10q0Y

1 ABojourpay pup g owyos 1of 8 einy291 ‘BupsauiBu3 upwoq ‘v Yun 8SIN0Y SunuwwiBoideBen jo [T}

FIONTTIIOXH
0 HAINTD
ppupdsa

apils snoaid 8y} Uo 81N}OBHYOIe BUL PUE 2INOSHYDIE SIY} USBMIS] SaJUBIaHIP B} ule|dx3
:0} 8|qe 8¢ p|noys siuspnis ay |
JALLO3rd0
iL-b 8PIS UO J0qo1 8y} Ul asemyos Buidasms ayy woJ Japip Buideams Jo} 9JEMYOS S,30q0J SIY} S80Q o

{A9HYl jo pesisul
adoad Joj Bup{oo] sl JI 1s810} & Yo1ess o} asn pinom joqol e £Bajens eyl Ul aoualayip Aue alaul S|
SNOILOVHILNI IN3ANLS
"1o8lqo ue Bui
-J820] UO UoHORSI JUSIAYIP € S siy] 1oslqo ue dn Bunjoid jo pesisul uonisod sy jsuen Jybiu joqoly e

‘pouad paxij e 1o} Jou ‘Ajlsjiuyep
-ul seyosess 3| ‘dn way} soid jou seop §f "ajdoad Jof sayoJess Ajuo j0qoJ siy uaIBYip SI UOISSIL BY)

“1a331] J0u ‘ajdoad 0} Jajal S}O3[qO UM pauIaouod saxoq [IY e

:9pljs SIy} UO ey} 8jou Ing "JI8Y1o 8y} ul Xoq Buipuodsaiioo
e s ajay} ‘(O uinj 1deoxa) auo ui xoq yoes Jo4 ‘suo snolAald 8y} 0} Jejiis 8injos)yole ue sey 10qol sty

‘ABiaua o o suni I jiun 819Ad
sy} Buinunuoo ‘urebe Jno sjes } -Buluin}al Jaje JO uIn} Jou SA0P ¥ 40q0I ISe| 8yl BXIjUN "1S8.04 84O JauJoo
1SeayUIoU 8y} Sayoeal i uaym uiblo jo Juiod s} 0} Suinjal i '10qo. ise| sy} &)1 Wy} S8jed0))l UsUm uoisod
118y} spwsuen § ‘pesisul ‘siexiy dn oid Jou S80p) “Jenl] 10U ‘SIalY o} NG JS810} B S8Y2IeSs 10qO) siyl

"SaOUSISYIP pue SBlLB|ILIIS SMOYS Saplls
om ayy Bunsenuoo pue Buedwos *Z-p 8PIIS Ul UBY} 10QO. JUSISYIP © 0} 2INj0s)iydIe Ue SMOUS 3plIS SIUL

/ ZO_mmDOm_n\

nofiunay Bopoury pup Anay iowfos of 2V

81291 ‘BunsauBul urewoq 'y wun esino)d BunuwewiBoideBep jo menend

JONTTIIOXA
0 NAINTD
opupkia

8|doad Bunoubi
‘Jeploq jsam
piemo)} deemg

a|doad Buoub,
‘JapJoq yinos
piemo} deamg

(1epioq yinos
$8Y0BaJ J0qOJ dOUO pajjed)

(311 payre2)

uibuo o yuiod
0} uinjay

(paiaA0D $I }S810} JO |8 UBYM Pojjed)

uin}al pue }sa.0}
ul aydoad o}
yoJeas :UOISSIN

_

uoneso|
ywsuel|

(punoj s

uossad e awy yore pajjed)

adoad Joy Burjooi
‘Isaio} e jo
JauI09 Iseaypou
plemoy Bez-617

(sydoad
10f yoiees
utbaq o} pajjes)

a|doad 10} 1s9104 Buiyosieas 1000y
10} 91N}931IY21y 9.1em}jos 1000y

j

/

1 Boouyag pup snay uomyfos 1of O einoen 'Bunesuibugy uewogq 'y Wun esnog BunuweiBoideBay jo . 1Y)

IONTTTIONT
0 aTINTS /
HE 3pIS SiUl UO paIoIdep aInjoslyIe [e1a
-uab 810w 8y} 0} SBPIIS SNOIABIG BY} UO SBINJOBYLDIR 10GO1 Dlj1oads BU} WIOH UOHISURS BU} pUBISIOpUN
:0} a|e 8 P(NOYS SIUBPMIS ay [
JAILO3rg0

‘g|qissod se asIo
-aid se ag ;ainjosyyoe olyvoads By 0} Yoeq ainjoslyoe pezifeausab siyl wol job o} Moy a8s NoA uer) .

SNOILOVHILINI IN3ANLs
futewop ay Ul jogqols Aue Joj ainoa)iyose esaush e s jeym

(‘pepeau jusi
pEayMo.Ie ay) je uolonuisul 8yl ‘1sixe 1,usaop ji §j) ‘swelfoid swos Aluo ui sisixa jjed ay} ueaw aulj paysep
B YIIM smouly “ulewop ay ul swelboud (je ul peay sy Je uoionnsul sy} Sijes |1ey 8U3 je Uoionasul a2y} uesw
aul| P1jOS B Y)IM SMOLY "S8Jnjos}iyole awos Ajuo uj pasn S| jusuodwiod sy} ueaw saxoq paysep ‘epl|s siyj uj

"ABiaus 40 Ino uni £syy [un sjelado sWog “AjLIRJUNIOA JJO UIn} SAemie },Uop S10qoY »
‘Ile Je uinial },uop SWOS ‘J0.} Ul 'SBOUBISWNDID JUSISYIP JSpUN UINSI SJOGOY «
‘papaau sheme },usse sjusuodwod SWOS ey} SMOYS g-i pue /-t saplig Buedwos ‘ospy

‘Buiyosess sl jogos sy}
U31uMm Jo} Jo8lqo Jo adA) sy} 0} seoUBIBJBI B} BAOWSI 8,187 "S108[00 JUBIBYIP O} YOILaS SI0qOI JUBISYI o

. UOISSIN Wiopad,, 0} xoq doj ay} azijessush s 197
JAYIOUE 0} J0QOJ SUO WO SIBYIP UOISSIL SIY) Jey) Uaas 8A,8M Ing ‘UoISSIW e swiopad Joqos AIang »

'sjusuodwos aquosap seselyd Joelisqy "SEOUSISYIP PUE SARLIEJILUIS BY} JO BUIOS SMOYS ainjord i

"S10G0J Judleyip Ul pesnal 8q Ued aiemljos ay) Jo Shed Uoiym pueisiapun wayy sya| abps
-IMouy siul “seimosliyose Buowe sedusisyip pue safile|iWIS Y} PUBISISPUN O} pasu sigaulbus Ulewoq

"S8p}jS om} snoirsid By} JO SaINJ0BYIYOIE BY) SSUIGLIOD }| "SainjoaliyoLe [eulblio oMy ay) Jo Jayye
ojul pajdepe aq UeD Jey} INj08}LdJe SUO Ol PaUIqUIOD 8q ABlU SBINJOBHLOIE OM} MOY SMOYS BpIIS SIUL

NOISsSNIsIa

Rfunyy opowpag pup xnay uowgos xof O 0n}oa7 ‘BuneauBug uwwoQ 'y yun :esinon BuwweiBoiduBely jo meIeAD

e o) Xq
0 HTINTD
opuiSarA

sjoslqo Bunoubi sjoslqo Bunouby
J8plioq 1sem ‘“Japloq yinos
plemo} deamg plemo} deamg
08iq0
(1epioqg yinos
sayoral J0qo.l 82Uo pajed) i1y payes) SIPUeH
uibuo (
| ‘punoy st 3o0alqo
0} tiniey uB UsYM pajfed)

(panaryoe sy uojssiw usym pajres)

1s8loj e jo
Jauloo jseayuou
premo) bez-617

T

_r. youwny |

N

(1o uiny o s1 Joqoi Ji pajed) "\ (uoissiw

AN 16aq 0} pajies)

AN

uolssIi
wiiopsd

$9.1N123)1Y21y 91eMm}lyos Om]
ay} bujuiquon

. Borouyay pup senag aowgos xof OF Y eine ‘BuiesuiBuly uwwWoQ 'y Yun :esino) BupuwmeiBosdeBapy jo A A0

s ™~

s
urewop
ay} u110qoi Aue o} sejdde Jey) suo 0} sainjoslydIe Je|illis JO jas e WOl uonezijesauab sy} puelsiapun e

:0} 8|ge 8q pINOYS sjuspn}s ay]
JAILOArg0

jouo ajbuls e Jo} JOU ‘S}0qOJ JO UleWOp ajoym e Jo} os op noA jng “suojp
-ONASUI [a1BY 8U} 8)1ea10 O} 8ARY |[iS NoA ‘JsauiBus urewop e sy ‘palinbai sijybne} usaq aAnok ebpsimous
Buiwweiboid sy} jie 81aym si syl "sjusuodwod sjqesnal ay) ajesuo o} aAeYy osje siesulbua urewop sy

'9-v 8pl|g uo pauol
-usw sainpaocoid uonessusb ay) ae esay] suolieuiquod W6 ayrino Buunby jo Jeyew eisnl s Ji—piey jou
S,Jey 'S}0q0J YdIyMm Ioj pepaau ale sjusuodwod ajgesnal yolym no ainby o} saey siasuibus ulewop ayj

‘(.81or1q0 8tenobap,, 10} Mooy arenobap,, 6°8) uoissiw ay; o} paydepe ‘Juem siasu
-1Bus uonesijdde sy Joqo. Jejnonsed ey} poddns o} papasu aJe ey} sjusuodwod Jo jes Jadosd 8y) e

*(,UOISSIN WoMad, 10} uinjey pue 1ap dn old, *6°8) 10q01 ey} jo seouenu ayy o} peidepe ‘(urel
-18] eyebineN, pue ,UOISSI| ULIoPad, ‘@l8y) utewop au ul sjodol | Aq paainbas jusuodwod yoeg

:Bunosies
Aq asemyos 10001 spjing Jeauibus uogesydde uy “Jusuodwod aremyjos sjgesnal e 0} spuodsa.Liod xoq yoeg

‘uJN}d] 0} UONONJISUI U Paau S10qol [je JOU ‘8l0}alal] "JouU Op SISUJO ‘Uinjal S}0qos sWog e

'0}19 ‘$98J} ‘S)00J 80r) SN SUjeLIS) JBYI0 U] S)oqoY "Wsy} punoJe
Kem 1oy} erenobeu oy suononisut Aue pasu},uop Asy} ‘alojalay) s9joelSqO 8ABY },UOpP SP[Sl Ui S}oqoy

‘Bezbiz 1o deams [|Im 10d01 aU} ‘1saio} B U| ‘dsams ({im Joqod
ay} ‘plel} 10 eipuny e u| "ulelssl ayl ybnouys ayebireu o} moy wayl sj|8 1yl uoionJisul ue pasu sjoqol iy e

.’puno} st UJ0d Jo Jea ue uaym doig, 0} aq B sduelsu) Jayjouy , uinias pue Jepy dn ¥oid,,
S1 UOIIONAISUI JBY} JO 8OUBISUI BUQ "UOISSIL B} Wiodad o} UooNJsuUl Ue AqQ USALIP S1 8JeMYOS J0GOI Y o

"ulewop sy} Ul jogos Aue Joy pasn aqg ued saibe s1esuiBua ulewIop Jeyl BUO S| 818y UMOYS anjosliyore 8y
"anjosyose 8y} Jo uonezielsuab ay) seje|dwod aplis sty
NOISSNOSIa

safeuay ooy puo wnay aomfos xf OV Y

einoen ‘BupseulBuz upwoq ‘v Hun :esino BupuweiBoiduBeyy jo meiniean

N

o))« §
0 YIINTD
opina

sweiboid swos
uj A sjied X

sweJsbouid jje
ug A s|ieo X

jussaid sawpawos

juasald sAem|y

j

| 198[qQ a|pu

| [915218q0 e1enobon |

AI..II
-
— I uresal | uweual
I | ojebiaeN | _eyebineN
- X X
:ho) “ !

| _

| _

_ |

Nl L

wb1Q jo wiod
I pouny o} uinjay

\ N A

N |
N\ |
N

,._o_mm_s_ wiopad |

urewoq 10qoH

A

EH
o

.E@:o...
ajebiaeN

10} 94N}991IY21y 9IeM}oS 10qO0H

/

. MBorounpor pup xmay omgbs of b %4 einjoe ‘BunesuiBul uewog ‘v uun 8o BuiwuwniBoiduBey jo .

AO

i jo) XT
0 NIINTD
opupnA

swaejqoid aA|os siesulbua

uonesidde disy o} aimpoayyoIe ay} woy paured abpajmor ™ sy} esn siesulbus urewop moy uteldx] e
:0} 3|ge 8g pjnoys sjuapnis ay}
S3AAILO3rg0

;oimpoid siyy ot a1 (apls snolneid au) Uo UMOYS St ~ajyoJe 8IeMYos J0q0l 8} S80p alayM

SNOILOVHIINI IN3ANLS
uoijn|og ajelausy), pajoajes noA usym pausddey yeym sisiy)

‘JuswuoJiaus Buussuibus uolreoidde ay} u)

‘uoin|os a|Buls © oI WaY} saulquiod pue sjusuodwod paidepe sy
e SaXe} Yoiym ‘(jauuny ayy) , Jesodwod jusuodwiod,, e pajusajdui osfe eaey sieauibus urewop ay)

. Bez-Biz, e 0} paydepe s| Jusuodwos uteus| ajebireN, ay ‘Auejiuig ‘(I S|
Beq sy usym Bujuinias Jap) dn Buiyoid jo uoissiw oyiosds sy} Wwiopad o} pajdepe st jusuodulod Uols
-Si|N Wiiopad,, 8y} ‘epls SIU} U] ‘suoisioap auy 0} Jusuodwod 8y} sidepe ‘sjusuodwiod pajos|es au} pue
suoisoap asayl UaAlb ‘ysiym xoq ,Jojdepe Jusuodwod, e pajuswaldwi osje sAey siesuibua ufeuwioq

-ajoelsqo ue sjenobau o} usuodwoo e Joses uop am ‘sBezb)z Joqos ayy eshedeg ‘wioped
wbiwoqo. e suoissiw ajqissod jje Buioddns jo ajqedeo jusuoduwiod e st yolym ‘Jusuodwod UoIssIy
wlopad, e 10918s oM ‘apl|s SIU} U] "suoionsu) oyioads eyl Jayiel 'sUORONASUI JO SaSSe|O ale sjuau
-odwoo pajosles asay] "siusuodwiod sjgesnal o Jas papasu ey} ssyluap! ‘(siuswainbal j0qol sy
SB UMOYS) SUOISIoap JO 185 & UsAlB ‘yoiym xoq ,Jojos|as Jusuodwod, e pajuswsidw osfe arey Asy]

-(JaUJOD Ya] WO 8y} 1k S1ayond au Ui umoys) susuodwiod sjgesnal Jo

195 & pejusiuajdwi 9ARY pue UlBLIOP }0qOI 8U} 10} 81NJORYYDJe 8} N0 painbl) aAey siesuibus urewoq

‘b JUN Ul pauleluod [elIsieul 8y} IXejuod u) seoeld
aplis SIY] '10qo1 SIY} O} puodsaliod ey} SUOISIOSP JO 39S e} epew sey Jeauibua uoneddde sy} swnssy

141} SINOO0 I8ABYDIUM ‘}S810} BI1jUS 8Y} PEISAOD
Sey §l UaYM Jo |in} st Beq sp uaym Buiuimal ‘se104 e Ul 1oy dn sxoid Jeyl joqol e 1o} si ajdwexa ay| 1ssu
-1Bus uoneoldde ay} Joj sayesls 1ssuibus urewop auy yeyl Ajljiqedes uonessusb uonnjos ayi smoys apls syl

NOIsSsSNOsIa

uonnjos e Bunesauab ul sdajs Jofew eaiy} sy} suyeq .

1afsumyy, KBojounaL pup TRy 2OWJOS Xof

(3% 4

eiryo97 ‘Bupiesu)Bug uwoQq ‘v Yun emunoD BulwweiBoideBeyy jo meinenO

sjusuodwon asemyos ajqesnay

j

Uo,
S Wioye,,

uiblIO 03 uinisy s108/qO alpueH
ajoelsqQ elenobenN urensa) eyebineN

sued
asodwo)

UuoIeI9UdL) UoIIN|0S

R Boounog pup wnay omgos of b P ainyoe ‘BuuesuiBug upwoq ‘v Iun esino) BujwweiBoiduBep jo A \0

mugkﬂ
QMENU
opupa

‘way} ussmyaq diys
-uone|las ay} pue Bunssuibus uonesiidde pue Bupieasuibua urewop JO SUOKOUNY OISB] 3L} PUBSIBPUN

10} 8)qe aq pjnoys syuspnys sy
JAILO3Arg0
&BuiuwesboideBaw,, suyap NnoA pjnom MOH

LAUM ¢198u1bus urewop e Jo Jsau
-I6ua uoneoljdde ue eq Jayyes noA pjnom ‘Bupssulbus urewop INOge 210w Sj|| 8 MOUY NOA JeU} MON

SNOILOVHIINI INJANLS

‘urewop ay} ul wajgold Aue aAjos 0} pasnas pue pasn aq ued Aay}
‘sjusuodwoo asoy} sjuswa|dw) seaulbuse urewop ay; eouQ ‘(sinpsesoid uogessusb ey)) sjusuodwod
asoyy Buisn Joj sainpaooud auyy pue (8injoajiyole asemyos ayy) uonn|os e dn ayew sjusuodwod asem
-40s Yeym jo Buipuelsiapun ue uo paseq st} ‘wasjqoid e 0} uoiin|os e sjelaush o) sueaw onewsisAsy

‘weajqoid e ajels Ajasioaid sisauibua uoneotidde sdiay jeyl ssecoid y

:dojaasp 0} pasn aq ued Buipuejsiepun siy] "UleWop & Ul suoin|os pue swajqoid sy jo
Buipuelsiapun ue Ul synsai Buusauibus urewoq “aul| paysep ay} arode BuiyiAiana passnosip sey Jun siy |

‘Buniesuibua uones)dde pue Buuesuibus urewop usamiaq diysuolnejal
ay) smoys ainjoid siy] “BujwwelboideBaw jo ainjoid ayy Buyuasaisd Aq xe1uoo ul ¢ Jun seoe(d aplis Syl

/ NoissnosIa

sofsunag Bopousag pus s aomifos xf r4% 4 eimoer) ‘Bunsewbug uewog 'y wun :esno?) BuiwwesBosdeBey Jo mewsan)

) Xd /
0 JAUINTD

spuplia
awolisny JNoA
Buseauibu & \/v
] 1oug :o::%m oW1 sjuawalinbay

uopeoyddy Jowojisn)
ujewop ayj ul]
wajqoid e 0} Uojn|os e ajeal)

a9y} ul wajqosd e anjos
djey o} uoijejuawinoop

ydeqpasd

Hunesuibug
uiewoq | (suonnjos pue swajqoid
y1oq) ujewop ay

JO spoadse |je puejsiapun

Buiwwelbosdebapy

Overview of Megaprogramming Course: Unit 4, Domain Enginecring, Workbook

UNIT 4: DOMAIN ENGINEERING

SUMMARY

Domain engineers are responsible for building what the application engineers need to develop
solutions. This includes:

¢ Defining what is in the domain
» Defining the process that the application enginecer will follow

* Developing process support (including reusable components) that the application engineer
will use to state the problem, validate it, and generate the solution

Step 1: :
Prgfifelv Gsetrfgrazlt'e
ate
Problem Solution

This is the “black box”
support that the domain
engineers create for the

application engineers.

Process Support JJ
DEFINING THE DOMAIN

Domain engineers decide what is in a domain.

Application engineers create individual systems. Domain engineers decide the range of systems
application engineers can create.

Deciding what is in a domain involves studying the factors that constrain the problems and solutions
which form the domain and deciding what problems and solutions are important.

Once the domain engineers know the problems that will be in the domain, they can study them and
uncover:

* The commonalitics among all problems
* The differences between instances of problems

DEFINING THE PROCESS

An application engineer needs to know what steps to follow in order to develop a solution.

Overview of Megaprog ing Course: Unit 4, Domain Engineering, Workbook

Domain engineers define the process for generating a sclution in the domain and develop process
support programs to help the application engineer. These support programs incude:

¢ Support for defining and validating the requirements for the solution

» Support for generating the solution

ARCHITECTURES

Every software solution is composed of components (e.g., procedures and functions). Every software
solution has an architecture, which defines how the components work together.

Domain engineers create a “domain architecture” that:
= Defines the complete set of components used by all solutions in the domain
* Shows what components and interrelationships all solutions have in common
¢ Shows how individual solutions differ.

The following figure shows the domain architecture for the robot domain.

| Perform Mission |

1 N\
| \
\
Y X
Navigate | Returnto | _Turn Off |
Terrain | Paint of Origin } ______
] 1 TTTTTTTT
| |
v o
i Negotiate | I 1
1__Obstacle |] |
e | |
v v i
Navigate Navigate
| Handle Object | Terrain Terrain

Key:
I: Always present i::::! Sometimes present

——p» XcallsY in all programs
———pp» Xcalls Y in some programs

Domain engineers create these components. They also identify which components are common to all
solutions in the domain and which are needed to solve specific problems.

Overview of Megaprogramming Course: Uit 4, Domain Engineering, Workbook

UNIT 4: DOMAIN ENGINEERING

IN.CLASS DISCUSSION

Compare results of the laboratory activity. Is there more than one robot software architecture
that satisfies the needs of each client? Why or why not?

What other kinds of robots could be produced by the URW, domain?

HOMEWORK

Considering the domain of the URW, would you, as Chairman of the Board, want to produce
robots to:

a. Plant corn
b. Pick water lilies
¢. Feed incubator babies

In making your decision, are there enough similarities to warrant asking your domain
engineers to write additional instructions?

The instructions in the left column were used to implement the software for a robot that
searches a tundra for lost hikers. Each instruction in the left column is an adaptation of an
architectural part in the right column. Match each instruction in the left column with the
architectural part in the right column.

Instructions Architectural Parts
1. Advance-north-moving-east-to-avoid-rocks- A. Perform Mission
returning-when-bag-full B. Navigate Terrain
C. Negotiate Obstacle
Move north one unit. If a rock blocks the D. Handle Object
path, move east around it. If a hiker is E. Terminate Mission

found, pick him or her up; if doing so brings
the robot to its full capacity, quit this instruction.

2. Advance-north-moving-west-to-avoid-rocks-
returning-when-bag-full

Same as Instruction 1, except that if a rock blocks
the path, move west around it.

3. Sweep-east-returning-when-bag-full

Move in a straight eastward line from the
current position to the eastern boundary of
the area to be searched. If a hiker is found,

Qverview of Megaprogi ing Course: Unit 4, Domain Engineering, Workbook

10.

pick him or her up; if doing so brings the robot
to its full capacity, quit this instruction.

. Sweep-west-returning-when-bag-fuil

Same as Instruction 3, except move in a straight
westward line from the current position to the
western boundary of the area to be searched.

. Sweep-south

Move in a straight southward line from the
current position to the southern boundary of
the area to be searched. Ignore any hikers.

. Sweep-west

Same as Instruction 5, except move in a straight
westward line from the current position to the
western boundary of the area to be searched.

. Pick-up-any-objects

Pick up as many hikers at the current location as
the capacity of the robot allows.

. Return-when-bag-full

Search tundra, looking for hikers. When the
robot’s capacity of hikers has been picked up, or
when the entire tundra has been scarched,
return to the point of origin and turn off.

. Return-to-starting-point

From the current position, return to the point of
origin.

Negotiate-rock-to-east-returning-when-bag-full

Assumes that there is a rock just ahead of the
robot, to the east. Moves the robot such that,
when the instruction ends, the robot is just to
the east of the rock, at the same latitude as when
it started. If any hikers are found while
negotiating the rock, they are picked up. If
doing so brings the robot to its capacity, the
instruction terminates, whether or not the rock
has been negotiated.

Overview of Megaprogramming Course: Unit 4, Domain Engineering, Workbook

11. Negotiate-rock-to-west-returning-when-bag-fuit

Same as Instruction 10, except assumes that
there is a rock just ahead of the robot, to the
west. Moves the robot such that, when the
instruction ends, the robot is just to the west of
the rock, at the same latitude as when it started.

12. Zig-zag-southwest

From the current position, zigzag southwest
until reaching the southern or western
boundary of the area being searched, whichever
occurs first. Ignore any hikers.

3. URW, has been approached by the U. S. State Department. The State Department is
concerned because it has received reports that embassies around the world have electronic
bugs embedded in their walls. The State Department wants to know if URW can supply a robot
that can locate these bugs. Fortunately, URW’s enginccrs have just finished developing a new
sensor, and they think it can be used for finding bugs. URW therefore decides to modify its
robot domain so it can produce this new type of robot in addition to those in its old product
line.

a. For each of the following decisions in the decision-making process, state a
requirement for the robot:

(1) Terrain

(2) Object type

(3) Choose if objects are to be carried
(4) Ending position

(5) Carrying capacity

b. Identify the decisions from (1) through (5) whose range of allowed values must be
changed to accommodate the new robot.

(Optional)

¢. Draw the software architecture for the robot, using the domain architecture as a
starting point.

d. Name some instructions from Question 2 that you think could be used without
modification.

¢. Name some instructions from Question 2 that could be used with modification. What
do you think the modifications might be?

f. Asadomain engineer for URW, what new components, if any, do you think would be
necessary?

Qverview of Megaprogr ing Course: Unit 4, Domain Engineering, Workbook

This page intentionally left blank.

Overview of Megaprogramming Course: Unit 4, Domain Engincering, Workbook

UNIT 4: DOMAIN ENGINEERING

TEACHER NOTES FOR IN.CLASS DISCUSSION

1. Compare results of the laboratory activity. Is there more than one robot software architecture
that satisfies the needs of each client? Why or why not?

2. What other kinds of robots could be produced by the URW domain? This is really an
open-ended question and should produce an interesting discussion.

TEACHER NOTES FOR HOMEWORK

1. Considering the domain of the URW, would you, as Chairman of the Board, want to produce
robots to:

a. Plant corn
b. Pick water lilies
¢. Feed incubator babies

In making your decision, are there enough similarities to warrant asking your domain
engineers to write additional instructions?

Note to teachers: Familiarity with Karel the Robot is helpful on the following questions.

2. The instructions in the left column were used to implement the software for a robot that
searches a tundra for lost hikers. Each instruction in the left column is an adaptation of an
architectural part in the right column. Match each instruction in the left column with the
architectural part in the right column.

Instructions Architectural Parts
1. Advance-north-moving-east-to-avoid-rocks- A. Perform Mission
returning-when-bag-full B. Navigate Terrain
C. Negotiate Obsiacle
Move north one unit. If a rock blocks the D. Handle Object
path, move east around it. If a hiker is E. Terminate Mission

found, pick him or her up; if doing so brings
the robot to its full capacity, quit this instruction.

2. Advance-north-moving-west-to-avoid-rocks-
returning-when-bag-full

Same as Instruction 1, except that if a rock
blocks the path, move west around it.

Overview of Megaprog

ing Course: Unit 4, Domain Engincering, Workbook

10.

. Sweep-east-returning-when-bag-full

Move in a straight eastward line from the
current position to the eastern boundary of the
area to be searched. If a hiker is found, pick him
or her up; if doing so brings the robot to its full
capacity, quit this instruction.

. Sweep-west-returning-when-bag-full

Same as Instruction 3, except move in a straight
westward line from the current position to the
western boundary of the area to be searched.

. Sweep-south

Move in a straight southward line from the
current position to the southern boundary of
the area to be searched. Ignore any hikers.

. Sweep-west

Same as Instruction 5, except move in a straight
westward line from the current position to the
western boundary of the area to be searched.

. Pick-up-any-objects

Pick up as many hikers at the current location as
the capacity of the robot allows.

. Return-when-bag-full

Search tundra, looking for hikers. When the
robot’s capacity of hikers has been picked up, or
when the entire tundra has been searched,
return to the point of origin and turn off.

. Return-to-starting-point

From the current position, return to the pointof
origin.

Negotiate-rock-to-east-returning-when-bag-full

Assumes that there is a rock just ahead of the
robot, to the east. Moves the robot such that,
when the instruction ends, the robot is just to
the east of the rock, at the same latitude aswhen
it started. If any hikers are found while
negotiating the rock, they are picked up. If

Overview of Megaprogramming Course: Unit 4, Domain Engineering, Workbook

doing so brings the robot to its capacity, the
instruction terminates, whether or not the rock
has been negotiated.

11. Negotiate-rock-to-west-returning-when-bag-fuil

Same as Instruction 10, except assumes that
there is a rock just ahead of the robot, to the
west. Moves the robot such that, when the
instruction ends, the robot is just to the west of
the rock, at the same latitude as when it started.

12. Zig-zag-southwest

From the current position, zigzag southwest
until reaching the southern or western
boundary of the area being searched, whichever
occurs first. Ignore any hikers.

Answers: 1-B, 2—B, 3—B, 4-B, 5-B, 6—B, 7-D, 8—A, 9—-E, 10-C, 11-C, 12-B

URW has been approached by the U. S. State Department. The State Department is
concerned because it has received reports that embassies around the world have electronic
bugs embedded in their walls. The State Department wants to know if URW can supply a robot
that can focate these bugs. Fortunately, URW’s engineers have just finished developing a new
sensor, and they think it can be used for finding bugs. URW therefore decides to modify its
robot domain so it can produce this new type of robot in addition to those in its old product
line.

a. For each of the following decisions in the decision-making process, state a
requirement for the robot:

(1) Terrain

Answer: The robot is to search buildings.

(2) Object type

Answer: The robot is to search for electronic bugs.

(3) Choose if objects are to be carried

Answer: The robot is to locate objects, but not carry them.

(4) Ending position

Valid answers: The robot is 1o stop when it locates a bug; the robot is to signal the location

of each bug it finds, and continue until it has covered all of the building; or both. That is,
URW should consider supplying both types of robots.

Overview of Megaprogramming Course: Unit 4, Domain Engineering, Workbook

(5) Carrying capacity
Answer: The robot will not carry any objects.

. Identify the decisions from (1) through (5) whose range of allowed values must be

changed to accommodate the new robot.

Answer: (1) — new terrain (buildings)
(2) — new object type (bugs)

(Optional)

c. Draw the software architecture for the robot, using the domain architecture =

starting point.

Answer: Draw the architecture with particular nuances based on how the robot terminates
its mission.

. Name some instructions from Question 2 that you think could be used without

modification.

Name some instructions from Question 2 that could be used with modification. What
do you think the modifications might be?

As a domain engineer for URW, what new components, if any, do you think would be
necessary?

Answer: The old search strategies do not work; however, realizing that is not simple.

10

Overview of Megaprogramming Course: Test and Survey

Test for Overview of Megaprogramming Course

1. Inthe following table, check whether the task would be done by an application engineer or a
domain engineer.

Application Domain
Task Engineer Engineer

Create the reusable components for a domain.
Work with the customer to understand the problem.
Validate the requirements.

Generate the solution.

Define what is in the domain.

Define the process and support needed to generate a
solution for a customer.

Precisely state the problem.

2. Read the following description of the Car4U Company:

BEEEEBEAREEER AR AR SN R ER R R E B R SR RS RS ERE AR RS R R R A RS SRR RSB R R AL ESES

Have you ever wanted a car that was taller? wider? bigger? Have you ever shopped the car
market and found nothing you wanted (and they still wanted a lot of money for it)? Well, no
more, because now there’s a new company for the discriminating buyer:

Do We Have a Car 4 U!

The Car4U Company makes cars that are tailored to your every need and desire. You can
have car seats that are tailored to your weight, height, and width. You can have bigger
windows or smaller windows. You can have bigger trunks or smaller trunks. If you want
four-wheel drive, you've got it. If you want your car to be a shade of blue that matches your
eyes, we can do that too (in fact, we have over 1000 colors to choose from!). We have engines
meant for cruising at high speeds and engines meant for climbing mountains. All in all,
Car4U has over 3 dozen options. Each one Is meant to help make your car truly your own.

We work with every customer to determine exactly what they want and then develop a car
that suits their needs. No longer will you have to wait for the perfect car. Stop by your nearest
CaraU store today and see what we can do for you!

BESRREABAEXSREERAERBR I RS R ESERECERBREERBEAEBAR AR EAREE SRR SRR e AR

Based on this description, answer the following questions. Attach separate sheets if needed.

a. 'What is the output of the Car4U Company’s domain engineering activities?

b. What is the output of their application engineering activities?

1

Overview of Megaprog ing Course: Test and Survey

3. Read the following description of TJ’s cash registers domain.

SEESREEEREE R B A SRSV IR LB AR R ELSS AR SRS AL RS APV RGBSR E XSS A EFESER S

Description of TJ’s Cash Registers Domain

TJ’s Cash Registers domain contains cash registers that can be used in just about any retail
situation.

There are several options through which money can be entered into a cash register. The
traditional way is to accept cash from the customer and store it in a removable money
drawer. In addition to the money drawer, some cash registers are equipped with check
imprinting services and/or the abllity to scan in credit cards. in all cases, each cashregister
keeps track of the amount of money that has been received from the customer.

Severalretail situations require the use of programmable keys that can store prices foritems
that are sold frequently. Other price input mechanisms inciude a price scanning function, a
scale for iterns sold by weight, or the use of the numeric key pad. Only the numeric key pad
and the programmable keys are standard, though the number of programmable keys can
vary from register to register.

To show prices and to show other information for the cashier and the customer, each cash
register has a digital display. Optionally, there may be a separate price display for the
customer, either on the back of the register or on a completely separate, smaller display that
is above the register and pointed towards the customer. After every transaction, each
register automatically outputs a cash register receipt that is printed with the date and time.

Higher-end cash registers can be hooked up to the store’s inventory system to either keep

track of what the store has in stock (along with a warning message when the stock gets low)
or to order items and have the customer pick them up at a separate location.

SERREENBERRNREPRREAETAS AR EB U RR LSS USRS LR RREEEERSSRER R RS SN RS

Based on this domain description, answer the following questions. Attach separate sheets if needed.

a. What are the members of the domain?

b. List the similarities between the members of the domain. Be specific.

c. List the differences between the members of the domain. Be specific.

12

Overview of Megaprogramming Course: Test and Survey

Survey for Overview of Megaprogramming Course

Please answer the following questions. The company that developed the course material will use this
information to improve the course.

1. Do you feel that you understand the basic principles of megaprogramming after taking this
course?

2. Do you see value in megaprogramming?

3. Would you like to learn more?

4, What activity(ies) or example(s) was most helpful to you in understanding megaprogramming?

5. Do you have any other suggestions for how the course can be improved?

13

Overview of Megaprogr ing Course: Test and Survey

This page intentionally left blank.

14

Overview of Megaprogr ing Course: Tes! and Survey

Test for Overview of Megaprogramming Course
Teacher Answers

1. Inthe following table, check whether the task would be done by an application engineer or a
domain engineer.

Task Application Domain
Engineer Engineer

Create the reusable components for a domain. X
Work with the customer to understand the problem. X
Validate the requirements. X
Generate the solution. X
Define what is in the domain. X
Define the process and support needed to generate a X
solution for a customer.
Precisely state the problem. X

2. Read the following description of the Car4U Company:

RREERSERREEBREERF R RAERRER A AR AR AR AR AR RA RS R AR E NSRS E SRR RS CE R

Have you ever wanted a car that was taller? wider? bigger? Have you ever shopped the car
market and found nothing you wanted (and they still wanted a lot of money for it)? Well, no
more, because now there’s a new company for the discriminating buyer:

Do We Have a Car4 U!

The Car4aU Company makes cars that are tailored to your every need and desire. You can
have car seats that are tailored to your weight, height, and width. You can have bigger
windows or smaller windows. You can have bigger trunks or smaller trunks. If you want
four-wheel drive, you've got it. If you want your car to be a shade of blue that matches your
eyes, we can do that too (in fact, we have over 1000 colors to choose from!). We have engines
meant for cruising at high speeds and engines meant for climbing mountains. Ali in alj,
Car4U has over 3 dozen options. Each one is meant to heip make your car truly your own.

We work with every customer to determine exactly what they want and then develop a car

that suits their needs. No longer will you have to wait for the perfect car. Stop by your nearest
Car4U store today and see what we can do for you!

EEESE XX REERRIESRIBEN SR AR R R R A KRR RS E R R RER RS AR ER SR TR BSEESkF

Based on this description, answer the following questions. Attach separate sheets if needed.

15

Overview of Megaprog ing Course: Tesl and Survey

a. What is the output of the Car4U Company’s domain engineering activities?

- Domain engineering would (1) create all of the different car components that would be
needed to make a car, (2) create the ordered list of questions that the car salesperson would
ask the customer, and (3) create the instructions for how the actual car builders would put
together the car based on the specific needs of a specific customer.

b. What is the output of their application engineering activities?

Application engineering would (1) talk with the customer to understand what the customer
wanted in a car, (2) use that understanding to come up with a precise statement of what
was needed in the car, (3) make sure that this precise statement was what the customer
wanted, and (4) generate the car (with help from the actual car builders) that met the
customer’s specific need.

3. Read the following description of TJ’s cash registers domain.

SEERESERERB R RS R AR EREETAER SRS RS EE S S SRS R SRR RS U R RS R E XA RS A AR R R RN

Description of TJ's Cash Registers Domain
TJ Inc. makes cash registers that can be used in just about any retail situation.

There are several options through which money can be entered into a cash register. The
traditional way is to accept cash from the customer and store it in a removable money
drawer. In addition to the money drawer, some cash registers are equipped with check
imprinting services and/or the ability to scan in credit cards. in ail cases, each cashregister
keeps track of the amount of money that has been received from the customer.

Several retall situations require the use of programmable keys thatcan store prices for items
that are sold frequently. Other price input mechanisms include a price scanning function, a
scale for items sold by weight, or the use of the numeric key pad. Only the numeric key pad
and the programmable keys are standard, though the number of programmable keys can
vary from register to register.

To show prices and to show other information for the cashier and the customer, each cash
register has a digital display. Optionally, there may be a separate price display for the
customer, either on the back of the register or on a completely separate, smaller display that
Is above the register and pointed towards the customer. After every transaction, each
register automatically outputs a cash register receipt that is printed with the date and time.

Higher-end cash registers can be hooked up to the store’s inventory system to either keep
track of what the store has in stock (along with a warning message when the stock gets low)
or to order items and have the customer pick them up at a separate location.

SEERRAERRAERE SRR AR R R LSRR R AR RRRERF S SR F RIS PR BB AR EBRRSRE RS SRR RS

Based on this domain description, answer the following questions. Attach separate sheets if needed.

16

Overview of Megaprogramming Course: Test and Survey

a. What are the members of the domain?
The members of TJ's Cash Registers domain are cash registers that could be built by TJ Inc.
b. List the similarities between the members of the domain. Be specific.

(1) Removable money drawer

(2) Ability to keep track of the amount of money received by customers
(3) Numeric key pad

(4) Existence of programmable keys

(5) Digital display

(6) Ability to output a cash register receipt

c. List the differences between the members of the domain. Be specific.

(1) Check imprinting services

(2) Ability to scan in credit cards

(3) Price scanning function

(4) Scale for items sold by weight

(5) Number of programmable keys

(6) Price display on back of register

(7) Separate price display pointed towards the customer

(8) Hook-up to store’s inventory system to keep track of what’s in stock

(9) Hook-up to store’s inventory system to order items to be picked up at separate location

ARG AR SRR R AR A GRS RS AL R RR AR R AR SRR RS LRSS R R B RE RS E R SRR A E R R XS AR SR R AR SR A SN AR NS

Survey for Overview of Megaprogramming Course

Teacher Answers

There are no right or wrong answers on this section. A suggestion for this survey would be to hand it
to the students after they have completed the test and give them extra credit if they fill it out and hand
it in the next day.

17

Qverview of Megaprogi

ing Course: Test and Survey

This page intentionally left blank.

18

nfuny Bopowyaal pup Xnxf 2omyos xf L-aqv

o) X7
0 JAINTO
puplign

"OU| ‘SIONIOM 1090y pauun MHN
abenbue| uonelauab-piiyl 19¢
UOIBID0SSY JUSWUISA0Y) JUBpNIS VOS
abenBue| uoneisuab-ypnoy 19V

_ suwAuoioy pue suolieinalqqy Jo 1si7

4 Bojoungpal puv ssnay anowifos of & ANV

IONTTIIOXT
0 AJINTD
oprudin

“yuejq yo| Ajjeuonusiul ebed siy|

Teacher Notes
for
Overview of Megaprogramming
Course

SPC-94044-CMC
Version 01.00.03

September 1994

Teacher Notes
for
Overview of Megaprogramming
Course

SPC-94044-CMC

Version 01.00.03
September 1994

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION
under contract to the
VIRGINIA CENTER OF EXCELLENCE
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road
Herndon, Virginia 22070

Copyright © 1994, Software Productivity Consortium Services Corporation, Herndon, Virginia. Permission to use, copy, modify, and
distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and provided that the
above copyright notice appears in all copies and that both this copyright notice and this permission notice appear in supporting docu-
mentation. This material is based in part upon work sponsored by the Advanced Research Projects Agency under Grant
#MDAY72-92-J-1018. The conteat does not necessarily reflect the position ar the policy of the U. S. Government, and no official en-
darsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or publicity pertaining to
this material or otherwise without the prior written permission of Software Productivity Consortium, Inc. SOFTWARE PRODUC-
TIVITY CONSORTIUM, INC. AND SOFTWARE PRODUCTIVITY CONSORITUM SERVICES CORPORATION MAKE
NOREPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS MATERIAL FOR ANY PURPOSE OR
ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED WITHOUT EXPRESS OR IMPLIED) WARRAN-
TY OF ANY KIND.

DOS and Visual Basic are registered trademarks of Microsoft Corporation.

HyperCard is a trademark of Apple Computer, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

Software through Pictures is a trademark of Interactive Development Environments, Inc.
StateMate is a trademark of i-Logix, Inc.

X Window System is a trademark of the Massachusetts Institute of Technology.

CONTENTS
PREFACE ... iiiiiiiiitnieeierennsasasesassnssosonnsonsscsassansassossons vii
ACKNOWLEDGMENTS cesererianan Gerteserienunnassesaneennanans ix
1. INTRODUCTIONov0nunnnnes Seteeerrettetttitaatatecatrnoanaanans 1
1.1 Overview of the Current Computer Science Curriculum 2
1.2 Definition Of TEIMSvuueitireit e tratrieee e itneneraeraoanonnnnn 3
1.3 Problems With the Current Curriculum ..ot 4
1.4 The Megaprogramming Curriculum Projectc..ooiiiiiiiiiian, 4
1.5 Purpose of TRIS Teport ... ovi it v ittt it ittt i ine i 5
1.6 Audience for ThiS REPOTtoiviiiiuiniiiiiiiiii ittt iiiiiiiieeennens S
1.7 Organization of This Papercouviiiiiniiiiiiiiiiniiiirinirnronnceanens 5
1.8 Typographic Conventionsovveveveurnuiiurnerrnennianisnceeoannns 6
2. SOFTWARE DEVELOPMENT IN INDUSTRY TODAYc..cviuvienceannns 7
2.1 Examples of SOftware PIOJECESvvvreienenienorainairninreeneiaesanenennnnns 7
2.1.1 A Contractual Software Development Scenarioc.ovvevuvenennann.. 9
2.1.2 A Commercial Software Development Scenarioccoeiininnnn.. 12
2.2 Problems With Software Developmentoouveniuineiieniuninrienonnannans 13
2.3 Success Stories in Software Developmentco.ocviiniiiiiiiieiiiiiteiaianans 15
2.3.1 Programming Languages and Productivityc...ccooiviianiinn, 16
i 2.3.2 Spreadsheetsouuineiiririorneierttiitanititieiataarirriiiaan 16
! 2.3.3 User Interface GENeratorsovovveeeinracirauenarencaoarsnensnensnnns 17
2.3.4 Rapid PIOtOtYPING . o oo vvveeviennnserernracsisseneseencnssaassnonennns 19

Contents

3. AN OVERVIEW OF ARPA’S MEGAPROGRAMMING EFFORT 21
4. MORE ON MEGAPROGRAMMINGccciiiiiiiiiinneiiiiinnnasannss 25
4.1 DOMAINS . ..\euuneieneiiiintn ettt iienttttetnearentneaneeennenanss 25
4.1.1 Concepts Of DOMAINSovriminiian et eiiienretiieteiaiarenaseieneneas 25
4.1.2 Influence of Domain on Software Developmentc..coiviiiinnn.. 27
4.2 Definition of Megaprogrammingc.cveeveeiuerenreraronerinceneranases 29
4.2.1 A Megaprogramming SCeNAarioccveieetetirieneneneneninnanane, 29
4.2.2 What Is Megaprogramming?coiiniriiiaiiiianininnnnnenenans. 32
4.2.3 Perspectives on Megaprogrammingoeeeetiennanninianennaannoans 33
4.3 Benefits of Practicing Megaprogrammingooiiiiiieniiininenaninan.. 34
5. THE NEED FOR MEGAPROGRAMMING IN HIGH SCHOOLS

AND UNIVERSITIES ... ccviiereiereenernnatssacaccsasnsanscssoceonasnans 35
5.1 The Current Curriculum: Strengths and Weaknessescooiovniiiiina.., 35
5.2 Benefits of Megaprogramming for Students ..ol 37
53 Whyinthe First Course?viuuvineniiinriieiieiaroaranerionennesaancanas 38
5.4 Benefits of Teaching the Overview of Megaprogramming Course 38
APPENDIX A. RELATION OF LECTURE SLIDES TO THIS REPORT 41

APPENDIX B. STRUCTURE OF THE OVERVIEW OF MEGAPROGRAMMING
COURSE tesetttcecnnenanans Cecretenresetnaraces .. 43
B.1 Unit 1: Software Developmentvviuiriiiiieiatiirnreneerenecieannans. 43
B.2 Unit 2: Concepts of Megaprogranimingcocveieveeasnrarnreeneneanas 43
B.3 Unit 3: Application Engineeringcocouiiimiiiiiiiiiiiieiininiannncas 43
B.4 Unit4: Domain Engineeringoevveviiimiiiinaiienreiiierienneiecnnnns 44
LIST OF ABBREVIATIONS AND ACRONYMS Ceersssenes cecereieenns 45
REFERENCESccccvennnn. ctessececesrneenaans Ceetseetsacecntetenenas 47

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

FIGURES

The Current Curriculum Model for Teaching Computing 2
Software Development Process 8
Sample Software Requirements Specification Table of Contents 10
Activities of Software Designcoviiiiiiiiiiiiiiiiiii i 11
A Pictorial Representation of an Application’s Interface Requirements 18
Relationship of MarkettoDomaincooiiiiiiiiiaiiieninnnnian 27
The Domain Engineering Process ...t 31

TABLES

Table 1. Mapping of Slides to Sections in This Report

..................................

PREFACE

The Software Productivity Consortium (Consortium) is a consortium of acrospace companies that
employ many of today and tomorrow’s software developers. These industries have a strong interest
in the quality of the software education today’s youth receive, for a well-trained engineer is a valuable
asset. The Consortium has therefore begun an ambitious programto infuse modern software develop-
ment concepts into the computing curriculum. This program, run by the Megaprogramming Curricu-
lum Project, is working with high schools and universities to devise new and innovative curricula and
supporting materials.

The project’s first product is the Overview of Megaprogramming Course. As of this writing, high schools
in Virginia and West Virginia have incorporated the course into their school year. Based on reactions
from those schools, the Consortium believes that the course provides an excellent introduction to me-
gaprogramming (a foundation for many important software concepts, as the report will explain) and
is useful to teachers who wish to keep their computer science courses in step with the state of the art.

The Consortium’s original model for introducing the course at a high school was to provide personal
instruction and consultation for teachers who expressed an interest in it. This approach is becoming
impractical as use of the course expands. In any event, even one-on-one instruction runs the risk of
omitting information. Hence this report, which captures the concepts covered during a typical tutorial
session. It is not entirely a substitute for face-to-face contact, but it should help the reader understand
megaprogramming. Moreover, it should convince the reader of the need for teaching the course.

The theme of this paper is that education in software development has for too long stressed
programming and computer science at the expense of engineering. Industry wants software engineers,
not computer scientists. Yet software engineering is still an optional course for most undergraduate
computer science majors and is seldom, if ever, mentioned in high schools. To be sure, teaching
engineering requires a scientificbasis, and developing software is ultimately about programming; both
topics are important. But to stress them at the expense of software engineering keeps the student from
learning the full truth about why industry considers developing software to be so hard.

The Megaprogramming Curriculum Project hopes educators will agree that megaprogramming
deserves a place in a student’s education. To the degree that it can, the project actively seeks to work
with schools in instituting megaprogramming, in soliciting feedback on the course, and in helping
instructors revise and expand the megaprogramming curriculum material.

Preface

This page intentionally left blank.

ACKNOWLEDGMENTS

Steve Wartik is the principal author of this report. Thoughtful reviews by Bob Christopher, Mary
Eward, Mary Johnson, and Jim Kirby have corrected everything from typographical twiddles to
significant conceptual mistakes. Wartik’s ideas have been rendered readable through Bobbie Troy’s

expert technical editing skills. Deborah Tipeni’s painstaking word processing and clean proofing
enhanced the overall quality of the document.

Acknowledgments

This page intentionally left blank.

1. INTRODUCTION

This report is part of the Software Productivity Consortium’s Overview of Megaprogramming Course.
The course, aimed at high school and freshman undergraduate computer science students, teaches
industrial software development concepts. It gives students a realistic look at how professionals build
software. It covers important, practical issues often absent from today’s classes. Although the course
is brief (1 to 2 weeks), it helps students relate their programming knowledge to the real world.

The Overview of Megaprogramming Course focuses on software developed by the technique known as
megaprogramming. The megaprogramming technique is very different from how most companies
(and students) develop software today. Students develop a single program in response to a homework
assignment; a company develops a single program in response to a business opportunity. By contrast,
people using megaprogramming develop a whole product line—that is, a set of programs. In doing
s0, they use sound engineering principles that give them a solid understanding of each program’s prop-
erties. This understanding may not help a company as it pursues a single business opportunity, but
companies seldom pursue single opportunities; they go after sets of opportunities. Megaprogramming
helps companies position themselves to obtain sets of opportunities. As this report will argue, it can
also be helpful to students.

The development of the megaprogramming technique has been sponsored by the Advanced Research
Projects Agency (ARPA) to help increase software’s quality and decrease its cost (Boehm and Scherlis
1992). If megaprogramming is widely adopted, it will have a profound influence on how people build
software. The difference will be as dramatic as when people first switched from assembly languages
to FORTRAN or Pascal.

This report provides an introduction to megaprogramming. It is intended for anyone wanting to learn
enough about megaprogramming to teach the Overview of Megaprogramming Course. It is one part of
the materials distributed with the course and is best read in conjunction with the other materials. It
does not assume familiarity with them, but it references the lecture notes, slides, and laboratory mate-
rial. This may prove helpful to an instructor preparing lectures: a reference to a slide (e.g., “See
Slide 1-4”) generally indicates additional material that can be discussed when presenting that slide.
Also, for each slide, Appendix A shows the material in this report most relevant to that slide.

This report is not to be viewed as a complete definition of megaprogramming. Rather, it presents
megaprogramming’s fundamental concepts and shows why these concepts are important in software
development.

Moreover, this report argues that megaprogramming should be a basic part of a student’s education
in computing. The Overview of Megaprogramming Course is a first step in this direction. The course was
created based on the belief that the computing curriculum has several significant deficiencies. The
next several sections (1.1 through 1.3) address this point.

1. Introduction

1.1 OVERVIEW OF THE CURKENT COMPUTER SCIENCE CURRICULUM

Asof this writing, compater science educationis a little over three decades old.! Those years have seen
considerable change in how people develop software. Once it was largely an individuai or small team
activity that generally yielded programs of under 50,000 lines of code—small in today’s terms. This
is no longer the case. Advances in hardware have resulted in huge increases in available memory
which, in turn, have led to larger programs. Today, large organizations routinely write programs
containing millions of lines of code. They spend several years doing so and set up a complex hierarchy
to build and maintain their products. Individuals and small teams still exist, but they work in ways that
were inconceivable 30 years ago. They rely on a complicated software infrastructure of compilers,
operating systems, editors, graphics libraries, and the like.

Computer science education has changed little in this period. The standard computer science
curriculum, now and then, begins by introducing students to programming. Students learn the syntax
and semantics of a computer programming language such as Pascal or Ada and are taught some
rudimentary concepts of formulating algorithms to solve problems and verifying these algorithms by
creating and executing test cases. They apply this knowledge to formulate algorithms in some
high-level programming language, which they then compile, execute, and test. This fills up one course;
subsequent courses introduce such topics as the science of algorithm analysis, the design and
impiementation of operating systems, or—often only in a student’s final undergraduate year—a
discussion of software engineering, that is, how professionals build software.

This curriculum model, shown in Figure 1, makes students reasonably adept at solving simple
problems after only one course. This is commendable, but it has two significant disadvantages:

» It introduces students to software development before teaching them any science they might use to
analyze the quality of their software. Real software must do more than simply compute the right
answer. It must execute efficiently. Its interface must be friendly to its users. It must integrate
smoothly with the system of which it is a part. Other people must be able to understand it. In
the hard sciences, such as chemistry or physics, students immediately learn quantitative
analysis techniques to address issues analogous to these. Quantitative and qualitative analysis
techniques exist for software, but students seldom learn them in their first course. As a result,
students learn to see software development as an art or craft, whereas it should be an
engineering activity—an application of scientific principles.

Learn Leam Learn Leamn
Programming Computer —> Special —> Software
Language Science Topics Engineering

Figure 1. The Current Curriculum Model for Teaching Computing

® The current curriculum model focuses on programming, a very small portion of the software
development process (see Section 2). The programming part is most amenable to concrete
analysis and requires the least abstract thought. However, as Section 1.2 discusses, most
fundamental skills a software developer needs are not part of programming per se. These skills
are not usually taught until the software engineering course. Instead, students learn
workaround techniques that are of questionable value to a professional (Prey, Cohoon, and

1. Purdue University founded the United States’ first computer science department in 1962,

1. Introduction

Fife 1994). By the time they take a software ¢ngineering course, the undesirable techniques
are firmly entrenched in their minds.

1.2 DEFINITION OF TERMS

This report so far has discussed “building” and “developing” software, and might also have included
commonly used words like “create,” “produce,” and * rite.” Students earn degrees in Computer Sci-
ence. They take courses with titles like Introduction to Programming and Software Engineering. They

use the skills they learn to develop software. What, exactly, is the relationship between all these terms?

Answering this question requires a combination of historical, academic, and industrial perspectives.
Industry’s goal is to develop software. Hence, the phrase software development 1. “ers to the whole
process of creating and rewriting software, starting with the first realization of its need, cn through
its first use, and from there through bug fixes and enhancements to the time when it becomes obsolete
and is finally discarded (see Slide 1-4). People use this and words like build, develop, write, and create
interchangeably-—although Brooks (1987) reports an epiphany on realizing their distinction. “I stilt
remember the jolt I felt in 1958 when I first heard a friend talk about building a program, as opposed
to writing one,” he writes. “In a flash he broadened my whole view of the software process.”

Software development, the previous paragraph claims, is a process. What does this imply? Webster’s
Dictionary (Merriam 1977) defines a process as “a series of actions conducted to an end.” An orga-
nization can perform a process in many ways; many are chaoticand poorly understood. These are the
bane of an organization, for poorly understood actions are hard to plan and manage. Organizations
want their processes to introduce engineering. In engineering (to paraphrase Webster’s), science is
applied to processes to make them useful to humanity. In other words, software development that in-
corporates engineering has a scientific basis. This science helps organizations predict the properties
of software without actually building it—just as a civil engineer uses the science of structural mechan-
ics to predict the load a bridge can hold without actually building it. Similarly, science also helps orga-
nizations create and perform a software process, just as chemistry helps a chemical engineer create
and perform a process to manufacture chemicals.

Software engineering, then, is software development using engineering. The science underlying this
engineering comes in part from computer science. Computer science lets software engineers predict
many important properties of software. For example, algorithm analysis lets them know that sorting
n elements takes time proportional to » Inn. Computer science also provides standard algorithms and
techniques. Backus (1978) reports that writing the first high-level language compiler took 3 years.
Today, thanks to research in areas like formal languages and parsing, students taking a compiler class
learn a well-defined science that lets them complete a compiler in a single semester.

Computer science is not the only science needed in software engineering. Large teams—sometimes
thousands of people—develop software. Managing these teams is a complex social process, and so the
social sciences, notably psychology, have made important contributions to software engineering;
Weinberg (1971) is an excellent example. Business sciences, too, have contributed their share, tailor-
ing management theories to software (Humphrey 1989) and providing models for estimating the costs
of developing software (Boehm 1981).

This broad focus distinguishes software engineering from programming. Programming is usually
taken to mean the parts of software development concerncd only with writing and testing programs.
Programming courses do not, as a rule, teach science. Nor do they teach a process of software

1. Introduction

development, engineering-based or otherwise. Students who only learn programming may know how
to create programs, but they do not know how to assess them. They also do not appreciate the
multidisciplinary nature of developing software.

In a famous debate at the annuai Computer Science Conference (CACM 1989), Edsger Dijkstra
argued that software engineering is not really engineering at all. He claimed computer science is still
too young to provide enough science for software development to be an engineering discipline like
civil or electrical engineering. Even his opponents accepted his opinion, at least in part. They realize
that “software development” more accurately describes what goes on in industry today than does
“software engineering.” This, however, does not imply people should avoid teaching what software
science and engineering is known. Moreover, software is developed in response to a problem in some
area such as civil or electrical engineering. The science from these areas can and should be put to use
during software development. Computer science courses stress this point all too infrequently.

1.3 PROBLEMS WITH THE CURRENT CURRICULUM

The discussion in the previous sections leads to the following description of specific problems with the
current curriculum:

e The initial emphasis is on programming, widely regarded as the easiest part of software
development (Ince 1988). Certainly, mastering programming requires grasping many new
language and logic concepts, and is not a trivial activity. But neither are any of the other aspects
of software development, and students deserve to learn about them as well.

» Science and engineering skills are played down. Students spend so much time learning
programming, they forget that programs are written to achieve an end. Professional software
developers, when they build a program, must be facile in areas other than programming. If
they are writing satellite control software, they must understand equations of satellite motion.
If they are writing an accounting package, they must understand business science. The
computing curriculum, by contrast, emphasizes programming and computer science concepts
without asking students to apply other sciences.

o Students are discouraged from using existing software. Professionals strive to avoid writing code
if they or someone else have written it before. They try to reuse existing code. Doing so is not
always easy, but the savings in time and effort is often immense. Students do not learn reuse
techniques such as megaprogramming and are often informed that using somebody else’s code
is plagiarism. Plagiarism aside, the result is that students must reenter code they have written
before—a time-wasting, rote activity. From a pedagogic perspective, students learn computer
science but not software engineering. They see computer science concepts building on pre-
viously learned computer science concepts (for example, analysis of sorting routine execution
time builds on the science of algorithm analysis), but they do not see engineering concepts
building on other engineering concepts.

1.4 THE MEGAPROGRAMMING CURRICULUM PROJECT

Addressing the problems with the current curriculum is the objective of the Megaprogramming
Curriculum Project. This project, founded in 1992 by the Software Productivity Consortium (the
Consortium), has the long-range goal to create, foster, and encourage curricula for high schools and
universities that include more software engineering.

1. Introduction

The project is accomplishing its long-term goals, in part, by creating short courses. Instructors use
these courses as special topics units that introduce students to software engineering concepts.
Teachers also gain knowledge of software engineering. They incorporate this knowledge into their
regular courses. The Megaprogramming Curriculum Project’s Overview of Megaprogramming Course
is a broad overview of modern software engineering.

1.5 PURPOSE OF THIS REPORT
This report serves the following purposes:

» The report complements the lecture notes for the Overview of Megaprogramming Course. The
notes are organized as slides suitable for making into transparencies; each slide has an accom-
panying page of explanatory notes. This organization, suited to a lecture, necessarily abridges
the notes. This report provides information that could not fit into the notes. Sometimes this
information provides context; while not likely to be incorporated into a lecture, it shows the
importance of megaprogramming in industry and academia. Other times, the information
simply did not fit into the flow of the lecture.

¢ The report provides instructors with answers to questions perceptive students might ask. This
information has often been omitted from the slides because it cannot fit into the format.
Indeed, presenting all of it would result in a course much longer than the anticipated 1 to 2
weeks. However, instructors will want to be prepared to go into depth on certain topics when
students show interest.

* The reportincreases awareness of industrial practices in the educational community. Instructors can
use this knowledge to teach practical aspects of software development, introduce realistic
concerns, and create projects and assignments incorporating more real-world considerations.

s The report assists instructors in preparing their own megaprogramming lectures, examples, and
exercises. The Overview of Megaprogramming Course cannot possibly suit everyone’s style. The
Megaprogramming Curriculum Project encourages instructors to develop their own
materials. This has been its model since the very first year, since curriculum propagation on
a nationwide scale is beyond the scope of a single project.

1.6 AUDIENCE FOR THIS REPORT

This report is intended primarily for high school and university instructors who are interested in
teaching the Overview of Megaprogramming Course. 1t is also of interest to anyone who wants to know
about the Megaprogramming Curriculum Project and its tenets. The reader should understand
enough programming and basic computer science concepts to teach an introductory course.

1.7 ORGANIZATION OF THIS PAPER
The material in this report is organized as follows:

* Section 1 contains an overview of the current computer science curriculum, definitions of basic
terms, problems in the curriculum, and a description of the Megaprogramming Curriculum
Project and how it addresses those problems.

1. Introduction

* Section 2 discusses a hypothctical software project, intending to present a reasonable picture
of the current state of industrial software development.

¢ Section 3 discusses the government’s concern about the growing costs of software
development, and the Megaprogramming Effort, which is responsible for starting the
Megaprogramming Curriculum Project.

* Section 4 covers megaprogramming in detail: what it is and why practicing it seems likely to
improve the state of software development.

* Section 5 discusses the importance of megaprogramming in academia, arguing for adoption
of the ideas of the Megaprogramming Curriculum Project into high school and college
curricula.

* Appendix A delineates how the lecture material relates to the organization of this report.

* Appendix B discusses the structure of the Overview of Megaprogramming Course.

1.8 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Seriffonteil.l General presentation of information.

Ralicized seriffont Mathematical expressions and publication titles.
" Boldfaced seriffont Section headings and emphasis.

Boldfaced italicized serif font Run-in headings in bulleted lists.

2. SOFTWARE DEVELOPMENT IN INDUSTRY
TODAY

Discussing the importance of megaprogramming or the need for curriculum changes requires an
understanding of today’s software development practices. This section describes issues that
companies in the software business face. It goes well beyond software, for software is a means to an
end and is influenced and constrained by a variety of forces that at first seem only peripherallyrelated.
Yet these forces shape the software throughout its useful lifetime. Therefore, understanding them is
important.

The lectures and laboratory in the Overview of Megaprogramming Course refer to United Robot
Workers, Inc. (URW), a fictitious company in the robot business. How does URW conceive the need
for a particular robot model? How does it turn that need into a working product?

2.1 EXAMPLES OF SOFTWARE PROJECTS

The answer to these questions is that URW follows a software development process. In software
engineering, a process is best thought of as a set of activities carried out in some predefined order. An
algorithm is one example of a process. An algorithm is a very precisely defined process, sufficiently
precise that a computer can perform it. The processes that companies use to build products are, as
a rule, vague in describing how to perform each activity, when each activity can begin, and when it can
end. But the process adds enough order for URW to pose and solve problems in a logical sequence.

Figure 2, drawn from Slide 1-5, shows a software development process URW might follow to build a
robot. Each box represents an activity. Arrows between the boxes show the order inwhich the activities
must be performed: an activity at the head of an arrow begins after the activity at the arrow’s tail ends.
The labels on the arrows are the products that result from each activity.

This process begins with the Requirements activity. Here, URW's engineers determine the problem
they are trying to solve: Who is their customer, and what is he or she trying to accomplish? In other
words, what characteristics must a solution to the problem possess? Answers to these questions let
URW know what type of robot to build. For example, the laboratory at the end of Unit 3 (see Appen-
dix B) asks students to consider several different customers. One is a farmer who wants to harvest
corn. Another is arepresentative from the National Park Service, who wants to pick up litter. The char-
acteristics of a solution for the farmer are quite different from those for the National Park Service:

» The general shape of the robots will differ, because of the terrains. A robot in a cornfield does
not have to contend with closely packed trees. Furthermore, it must carry large amounts of
corn—hundreds or even thousands of ears. By contrast, a robot that picks up litter in a forest
will zigzag around trees, limiting its size; this small size means a small carrying container, so
it can carry a much smaller volume of material than the cornfield robot. These factors have
implications on the motor and power technologies too.

2, Software Development in Industry Today

* The robots will need different software. The litter-carrying robot encounters trees, and so
needs obstacle-avoidance routines. The cornfield robot does not.

Requirements ‘-——Eequirements specification

Design : software design

Code j implementation (untested)
Test implementation (tested)
I
Deliver l product
Support
revised product

Figure 2. Software Development Process

The type of customer introduces some interesting differences. The National Park Service is part of
the United States Government, and the government does not buy things the same way as a farmer.
The farmer purchases the robot at a store, The store’s sales staff show her a complete product line
of robots, and try to convince her that one of their robots will meet her needs. If she agrees, she buys
the robot. If not, she either goes to a competing store or decides to do without a robot. If she ends up
purchasing a robot, she probably gets one that does almost everything she needs (but not quite) and
has a few features she doesn’t want (rather like a nonsmoker who buys a car: all cars come with
ashtrays).

To satisfy this market of farmers, URW engages in commercial software development. URW will build
aline of robots with the features they think farmers want; they won’t anticipate everyone’s needs per-
fectly, but they will produce a product that satisfies most farmers most of the time. URW anticipates
that this strategy will yield high sales volume, justifying the extra costs of adding sometimes unused
features to the robot and its software.

The government does not operate this way. Rather than selecting from among a set of ready made
commercially available “off the shelf” robots, it will present its problem to a company and ask them
tocreate arobot that solves its particular problem. URW will sign a contract promising to build a robot
that solves exactly the government’s problem—no more and noless. URW will agree to build the robot
at a predetermined price and to deliver it within a stated time period. This is called contractaal
software development.

Software developed for the commercial market is very different from software developed under
contract. Commercial software must appeal to a broad range of people; contractual software must
appeal only to its purchaser. Commercial software is developed in anticipation of customers;
contractual software is developed for a specific customer. Commercial software, then, tends to be
broader in scope, with many features; contractual software, by comparison, is more focused.

2. Software Development in Industry Today

Unexpectedly, commercial software usually contains fewer lines of code than contractual software.
Although more focused, contractual software tends to solve problems that are inherently more
complex than those tackled by commercial products. For example, word processing (commercial) is
simply not as challenging as satellite control (contractual). The equations for arranging text are trivial
compared to thosc for keeping a satellite in orbit and in touch with earth.

Furthermore, commercial and contractual software buyers have different expectations of their
producte If the farmer’s robot fails because of a software error, she will be justifiably upset, but she
is not likely to suffer catastrophic loss. By contrast, failure of satellite software may render an already
launched billion dollar satellite inoperabile; failure of navigational software might result in hundreds
of people losing their lives in an airplane crash. This explains why some commercial software
corporations have a repuiation of letting their users find errors in their products, whereas the
government insists on extremely rigorous testing of its software (which still doesn’t always find all of
the errors). It also explains why one government study estimated that the cost of testing a satellite
control program came to $1,000 per line of code. Lastly, it explains why some of the space shuttle’s
hardware and software dates from the Apollo program. The software may have been written long
before anyone knew about structured programming, and the hardware may be antiquated, but both
are known to work in situations where death is the price of failure. NASA's budget cannot stand the
expense of rewriting and retesting the software for modern hardware.

The scftware is not the only thing that differs between contractual and commercial software
development. The software development process itself differs considerably. Figure 2 is a reasonable
abstraction of both cases, but the details of each activity bear closer scrutiny depending on the model
in use. The following discussion (Sections 2.1.1 and 2.1.2) will concentrate first on the contractual
model. It will then show how the process differs when URW uses the commercial model.

2.1.1 A CONTRACTUAL SOFTWARE DEVELOPMENT SCENARIO

Figure 2 shows that each activity of a process yields some product. The product that results from the
Requirements activity is a requirements specification. This is a statement of the problem URW is to
solve. The requirements specification comes from the customer, at least initially, because the custom-
er is the one who recognizes the problem. In the contractual software development model, the custom-
er will create a preliminary version and announce that he wants to award a contract. Companies such
as URW will submit proposals on developing the software, giving a cost and schedule. The customer
will select one (typically, the lowest bidder) as the contractor. The customer and the contractor will
work together to refine the customer’s preliminary version of the problem into a precise requirements
specification. This specification serves as a contract between the customer and the contractor. It states
exactly what software the contractor must develop to satisfy the customer.

What sort of information does a requirements specification contain? Figure 3 shows a sample table
of contents, annotated to explain each section. The guiding rule is to define what the software must
do, but to avoid stating how the software must do it. Slide 1-5 compares requirements specifications
to homework assignments. This is a good analogy: the teacher presents students with a problem
without divulging how to solve it.

Assume that URW submits the winning proposal. The requirements specification guides URW during
the next activity: Design. During this activity, URW conceives and plans how the robot will work. This
includes such issues as:

2. Software Development in Industry Today

¢ What is the shape of the robot? During the requirements phase, URW will have noted the
terrain in which the robot must operate, and that the terrain imposes constraints. During
design, URW must choose a shape that works for the constraints.

¢ What hardware will be used to build the robot? For instance, what types of sensors will it have?
What type of locomotion mechanism will it use? Furthermore, what tasks will the software
perform? That is, what is done by hardware and what is done by software?

¢ What is the software architecture? Software has an architecture, just like a house. URW’s
engineers create a view of the robot control software as a set of interacting components. Each
component will play a specific role. For more information on the architecture of the robot
software, see the Unit 4 lecture.

1. Introduction. An overview of the problem: What is it,
and—broadly spesking—what is the nature of the solution
that will be proposed?

2. Inputs and Outputs. A description of how the system is
connected to the outside world. For example, a word
processor uses a keyboard and mouse as input and a screen
and a printer as output. An automated teller machine uses
a keypad and card reader asinput, and a screen and a money
dispenser as output. URW’s robots use sensors and
compasses for input and control arms and locomotion
devices as outputs.

3. Modes of Operation. A description of the different
operating modes, as & user might conceive them. For
example, word processors often have text entering modes,
ruler setting modes, equation modes, and table modes.
Modes providing a means to categorize the software

4. Description of Software Functions. This is the meat of
the requirements specification. It describes the legal inputs
tothe system and how the system must respond to each. This
response is stated in terms of the outputs produced. It
avoids mentioning algorithms (it is analogous to how a
teacher tries to phrase homework assignments).

S. Reactions to Undesirable Events. The description of
software functions describes responses to legal inputs. This
describes responses toillegal inputs and other “undesirable
events” (like detection of hardware problems). In a word
processor, shutting down is usually acceptable. Software
controlling a satellite hurtling toward the outer planets
lacks this luxury; it must try to recover from an undesired
event.

6. Required Subsets. Systems are often planned in full but
built in stages. This section describes acceptable
intermediate subsets.

7. Glossary A description of terminology used in the
requirements specification.

Figure 3. Sample Software Requirements Specification Table of Contents

Figure 2 shows the software development process as it appears in Unit 1. In fact, Slide 1-5 is a
simplification of the design process. Usually, design consists of two activities: Architectural Design
and Detailed Design, shown in Figure 4. The architectural design describes the software as a set of
components. The detailed design describes the inner workings of each component. In other words,
experience has shown that software design is easiest if one first splits the design into parts, then
concentrates on the details of those parts. This is akin to an architect designing a house by laying out
the rooms and their relative positions, then determining each room’s details—the positions of the
electrical outlets and ventilating grates, for instance. The overall layout of the major components
(rooms) takes precedence over the details.

The Requirements activity was performed jointly by URW and its customer. URW’s engineers are
responsible for creating the design and do not expect the customer to be involved. As part of the
contract, however, the customer will usually insist on a review after each activity. Thus, the customer
will hold a preliminary design review after architectural design and a critical design review after

10

2. Software Development in Industry Today

detailed design. These reviews will assure the customer that URW’s progress is satisfactory and give
URW a chance to get feedback on the quality of their design.

Requirements requirements specification
Design
Architectural architectural design
Design
De!ajled (plus architectural design) tesi
4
Code

Figure 4. Activities of Software Design

Design s followed by the Coding activity. Here, URW’s engineers implement the design by expressing
itin a programming language. The design envisions a solution to the problem expressed by the require-
ments; the code realizes that vision, just as a house is built to blueprints. Unlike the design, the code
can be compiled and executed. URW can use it to run a robot.

The Coding activity begins with the design and ends when URW’s engineers have created a first, tested
version of each component. In large software development projects, URW will divide its engineers
into teams and make each team responsible for implementing a particular set of components. This
way, the teams can work in parallel.

Once a team finishes a component, they begin the Test activity. Testing occurs in two parts: unit testing
and integration testing. During unit testing, a team tests a component they have coded. They test the
component as an indivisible unit, according to the information about that component in the detailed
design. After a team has tested a component, they integrate it with other components that have passed
unit testing. They subject the resulting subsystems to testing; in other words, they assemble the soft-
ware component-by-component, until all components have been integrated. This process of integra-
tion and testing is referred to as the Integration Testing activity. When they have integrated all
components and tested that resulting product, they have a working system.

URW must next deliver the software to its customer. Actually, since URW builds robots and not just
software, it will integrate the software with the robot hardware.2 It can then deliver the robot to the
National Park Service. This involves transporting the robot to its destination, performing final tests
in the actual environment, and training necessary personnel to operate it.

Finaily, URW must support the National Park Service in using the robot. Despite URW’s engincers’
best efforts, the robot will probably fail occasionally because of errors URW made while designing and
implementing the software. URW will be responsible for fixing these errors and for delivering the cor-
rected software to the customer. It is also likely that the Park Service did not fully understand the scope
of the problem and made errors in the requirements. For example, they might have forgotten that the
trail they want the robot to patrol floods each spring; therefore, they did not ask for a watertight robot.

2. URW will have a hardh development | as well as 8 software development process. The combined effort to

|

develop hardware and software is called the system development process, but that’s outside the scope of this paper.

11

2. Software Development in Industry Today

Accordingly, they may ask URW to redesign its robot. URW will be asked to correct design errors at
no charge, since such errors are its own fault; but the Park Service must pay URW to implement
changes in the requirements, because the original requirements were a contract that URW fulfilled.
Each change will be done by following the software development process in miniature, modifying ex-
isting work rather than creating products from scratch. The Park Service and URW will first agree on
the modified requirements. URW will then determine how the change affects the design. It will then
modify the code, test the modified version, and deliver the new version to the Park Service.

Error-free products are, unfortunately, the exception rather than the rule. This is true of all products,
requirements and design as well as code. Datamation (1994) reported that California’s Department
of Motor Vehicles committed 28 million dollars to modernizing its computers. The new facilities were
installed after 6 years, at a cost of 44.5 million dollars—and were junked after a few months, because
the requirements had been expressed improperly. Ince (1988) describes a U.S. Government Account-
ing Office report showing that over 90% of government-contracted software systems were unusable
as delivered—and of that 90%, over 50% had requirements so poorly conceived that they could never
be used. The cost of modifying the software would have exceeded that of maintaining the status quo.

In other words, Figure 2 is something of an idealization. Royce (1970) termed it a “waterfall model”
of software development, since it depicts work flowing smoothly down from one activity to another,
as water flows downstream over a series of falls. In reality, the work flows upstream too: Figure 2
should show arrows from design to requirements, from code back to requirements and design, and so
on—that is, from each downstream activity to all activities upstream fromit. The arrows would denote
errors from a previous activity caught during the activity at the arrow’s tail. People omit these arrows
to simplify the picture, claiming that the arrows shown in Figure 2 depict the most significant work
flows. The data in Slide 1-6 contradict this, as do the arguments of many researchers in the area
(McCracken and Jackson 1982).

2.1.2 A COMMERCIAL SOFTWARE DEVELOPMENT SCENARIO

When URW develops a robot to harvest corn in a field, it will follow the process in Figure 2. The
essential steps of commercial software development remain the same as for contractual software
development. However, the objectives of the activities are quite different. This section gives a scenario
for commercial software development.

The Requirements activity differs most. There is no customer to develop the initial requirements
specification for URW. Instead, URW must perceive the market for a corn harvesting robot and
determine the characteristics of that robot themselves. This is a risky operation. URW should consult
with farmers who may be potential customers, trying to understand what they would like in 2 robot—in
fact, trying to understand if there really is a market for such a robot. Many a clever invention has failed
because it solved the wrong problem, because it had too much close competition, or because people
turned out to be satisfied with what they had.

The requirements specification that URW develops is therefore not a contract. It is only a description
of the problem to be solved. As in contractual software development, URW’s engineers use it to guide
them during the Design, Code, and Test activities. These three activities do not differ significantly
from their counterparts in contractual software - svelopment. URW’s goal for each is still the same:
to produce a product that is a solution to the problem stated in the requirements. However, there is
no customer. An outsider does not fix a schedule; URW simply tries to get its product to market
quickly. URW holds design reviews solely for its own benefit.

12

2. Sofiware Development in Industry Today

This isolation poses problems for URW. Software engineers have long recognized that the only
reliable way to assess software’s correctness is to try it in an environment representative of its ultimate
market. If, during development, URW is beholden to no customer, how can it ensure that its products
will satisfy customers? URW might address this risk by performing alpha testing and beta testing.
URW “alpha tests” its product by using a preliminary version in a realistic environment. Engineers
operate the product as if it were the final version, except no one is surprised when it fails. This provides
URW with useful feedback without fear of alienating customers.

URW follows alpha testing with beta testing. During beta testing, URW gives the alpha-tested version
of its product to a few selected customers. These customers, who are usually given some financial
incentive, also operate the robot as if it were a final product, again with the realization that it will
probably fail (URW selects customers who are potentially interested in the robot but whose business
is not jeopardized by its failure). Customers report failures and other problems to URW. As URW
receives their reports and corrects the problems, it gains confidence that its product is robust enough
to compete in the marketplace.

In the Deliver activity, URW does not deliver the software to a customer. It markets its product
through an appropriate channel, like a store or 2 mail-order service. In the Support activity, it gauges
its product’s success based on sales. It keeps abreast of interest in the product and determines whether
the product can be improved—often, introducing a product changes the environment in which it is
used, leading to new product opportunities. (Witness the automobile, whose capability for greater
speed than the horse led to the paved road; in turn, paved roads led to faster automobiles.)

Inshort, URWis not directly responsible to a single customer, as in contractual software development.
Although contractual software tends to be more complex than commercial software, the requirements
for commercial software are much harder to discern and much more likely to change. Commercial
companies usually introduce new products more frequently than contract-based companies. They
often have a complete product line—that is, a set of related products—so they can compete in several
market niches. Where the contractual company supports only a single version of a product, the
commercial company must support each product in its product line—not to mention always having
to consider whether to add new products to the line.

2.2 PROBLEMS WITH SOFTWARE DEVELOPMENT

Section 2.1 showed how URW could follow an organized software development process to create its
robot control software. So what could go wrong? Pienty. In reality, software development is just this
side of chaotic. This section shows some of the reasons why it is difficult.

* Expressing software requirements. Requireraents written in English are usually ambiguous: the
gift of clear expression is given to few. Requirements are often incomplete. One way to think
of software requirements is that they should describe all possible inputs and all allowable re-
sponses to those inputs. No one has yet discovered a good method for determining whether
requirements written in English can describe all the inputs and responses.

Because of this problem, many people have proposed expressing requirements using
mathematical notations. Such notations are unambiguous and can be checked for
completeness—often by automated tools, which is especially helpful as it relieves people from
performing a tedious, time-consuming chore. However, many people find these notations
difficult to learn and use. No conclusive evidence exists that mathematical notations are more
effective than using English.

13

2. Software Development in Industry Today

Furthermore, the real problem with requirements is not so much whether they are complete
and unambiguous, but whether they describe the right probiem. Time and again, experience
has shown that people have difficulty fully grasping a problem—and grasping the problem is
vital to producing the correct solution. This is well illustrated by a radar system the U.S. built
in Greenland in the 1950s to detect missiles over the North Pole. Early in its operation, it re-
ported the approach of a missile the size of the moon—indeed, it was the moon, for the people
who wrote the requirements had overlooked that celestial body’s existence. The engineers
who wrote the software from those requirements did their job perfectly, for they satisfied their
contractua! obligation to detect high-altitude, distant objects. Sometimes, the most obvious
things are most evasive.

Determining whether the requirements describe the right problem is termed validation.
Validation is different than verification—dectermining whether the software behaves
according to the requirements. An organization can perform verification on its own, but
cannot validate software except by exposing it to customers. (The laboratory illustrates this
point: the Validate Requirements step forces students to put questions to their hypothetical
customers.) Therefore, validation is risky. In contractual software development, customers
may be forced to admit they did not understand their needs. In commercial software
development, an organization faces embarrassment if its potential customers judge its product
shoddy or ineffectual.

Following a software development process. Telling someone they must write a software
requirements specification is one thing. Telling them how to write that specification is another.
Software developers understand the processes they must follow much better than they
understand the methods for performing individual activities of a process. Despite extensive
research in the area, specifying and designing software remains something of an art. People
are told that an activity must yield a certain set of products, but are on their own as to how they
should create those products. People have proposed methods, such as structured analysis
(Marco and McGowan 1987) and object-oriented design (Coad and Yourdon 1990); but
methods ease the problem at best. They do not solve it.

The discussion of Figure 2 on page 12 mentioned that it omits mistakes and therefore
describes software development only partially. This is another dimension of the difficulty of
following a process exactly. The picture is supposed to depict an orderly sequence of activities
that occur one at a time. In reality, several occur simultaneously, working with partially
finished and not fully correct products. Such a situation is very difficult to manage.

Keeping requirements and documentation up to date. All too often, when errors are found in
requirements or design documents, no one bothers to create a new, fixed version. Even though
the errors are corrected, nobody records the change except in the software. The software is,
after all, the goal. As long as it behaves as everyone expects, why bother correcting a mistake
in the design document?

The answer is to avoid confusing the next person who reads the design document.
Unfortunately, software developers are under pressure to get the software up and running.
Everychange they make to the design document delays the software. Those delays cost money,
in the form of lost sales or broken contracts. Companies concentrate on the end product and
ignore the intermediate ones. They forget one crucial detail: the majority of effort that goes
into software occurs after the first version is deployed (Boehm 1981). One reason people

L]

2. Software Development in 1ndustry Today

spend so much effort during that time is because they’re reading incorrect and out-of-date
requirements specifications and design documents. These documents were supposed to help
them understand the software and facilitate its maintenance; instead, they confuse.

* Grasping software design. No one has discovered a way to describe software design clearly and
concisely. Many techniques have been tried. Industry is awash with designs featuring data flow
diagrams, component interface specifications, information hiding structures—the list goes on.
These are helpful, unquestionably, but they lack a key quality: they do not present an inte-
grated, all-inclusive picture of design. An architect’s blueprints convey a clear picture of a
house. An electrical engineer’s circuit diagram shows all the parts and interconnections need-
ed to build an electrical system. By comparison, any of the software design notations just men-
tioned present only a tiny part of the software’s structure. (This situation probably reflects the
relative age of the professions. Architects have had several thousand years to refine their craft.
Electrical engineers have had over a century. Software engineers have had less than 30 years.
In time, perhaps, software engineers will discover an equally descriptive notation.)

* Resisting change. People and industries like to stick with familiar methods and are reluctant to
adopt new approaches. What project manager wants to risk her or his project’s success on an
unproven technology? Any technology is viewed with skepticism unless it is proven to be much
more effective than current practice. New techniques necessitate training, which consumes
valuable time and increases cost. A manager will readily accept change only when someone
has shown that instituting the change will save time or money. Unfortunately, studies that
prove such savings conclusively are few and far between in the world of software.

There are many, many more reasons why software development is so difficult. This section is by no
means comprehensive; the problems discussed are only those most closely related to the Overview of
Megaprogramming Course. Brooks (1987) gives an excellent discussion of other reasons.

2.3 SUCCESS STORIES IN SOFTWARE DEVELOPMENT

The preceding section might seem too gloomy. Software is involved in many aspects of our lives. In
other words, people can and do develop it. So is developing software really such a problem?

The answer to this question lies more in the economics of software than in the technical problems in
building it. Everyone knows how hardware costs have fallen stcadily since the computer was first
created. Computers keep getting faster, cheaper, physically smaller, and logically bigger. By contrast,
the cost of developing software has not changed much over the past fewdecades. ANASA study during
the late 1980s by Kouchakdijan, Green, and Basili (1989) showed the average software developer pro-
duced 24 lines of code per day, a figure about the same as in the 1950s. To be sure, today’s software
developers are building much larger systems. Then again, they program in much more advanced lan-
guages, use interactive terminals instead of punched cards and paper tapes, and have access to devel-
opment environments which would turn a 1950s programmer green with envy. One would think that
these advances should make today’s developers much more productive. In general, this does not scem
to be the case. Software remains costly to develop and maintain.

However, some projects have produced software at much lower cost than average. Sometimes this
improvement comes from the people staffing the project: Bochm (1981) has shown that individuals’
productivity varies by a factor of 4 depending on their skills. Other times, though, the difference can

15

2. Software Development in ladustry Today

be attributed to technical factors. This section explores some promising areas of the state of the art
in software development.

2.3.1 PROGRAMMING LANGUAGES AND PRODUCTIVITY

There is some evidence that productivity is independent of the language or environment a person uses.
Assume a person writing in assembly language averages 24 lines of assembly language each day. That
same person would average 24 lines of Pascal each day, or 24 lines of Ada each day. If they were devis-
ing a spreadshee, they would average 24 lines of the spreadsheet language each day. The explanation
for this is that the human mind can deal with a certain amount of detail and complexity. Each of these
Ianguages has its own set of complexities the person must master.

This does not mean language is unimportant. The 24 lines of Pascal are not equivalent to 24 lines of
assembly language; they are probably equivalent to several hundred assembly languag: instructions.
Thus, the Pascal programmer will be far more productive than the assembly language programmer—
that s, will build the same application quicker. The Ada programmer will be better yet, and the spread-
sheet programmer will beat them all.

Of course, the spreadsheet programmer can only create spreadsheets, whereas the Pascal and Ada
programmers have more options; none of them has the flexibility of the assembly language program-
mer. The programmers working in higher-level languages are working in restricted problem domains.
That is, they are dealing less with characteristics of their computer and more with characteristics of
the problem they are solving. The spreadsheet programmer’s energies are directed toward creating
the spreadsheet formulas. If the Pascal programmer tried to write the same spreadsheet, he or she
would also have to consider details of creating and manipulating data structures to represent the
spreadsheet. These details are irrelevant in the spreadsheet language; they are embedded in the
spreadsheet program itself. The assembly language programmer would have to consider not only
these details, but computer-specific details as well—which registers to use, the most efficient memory
locations for information, and other details that are irrelevant in Pascal because they are embedded
in the compiler.

Software development started with languages that forced people to consider computer-related
details. It has been moving steadily away from such languages ever since. Languages like Pascal and
Ada are intended to help programmers represent algorithms. They are therefore suitable first
languages because computing courses begin by teaching students algorithmic programming concepts.
However, one of the crucial achievements of software development is the realization that many parts
of a program are best represented using nonalgorithmic constructs. Instead, programmers write
software using a language specific to the domain of the problem being solved. This language is at a
higher level than Pascal or Ada. Therefore, the person who writes 24 lines in this higher-level language
achieves a result equivalent to the person who writes several hundred lines in Pascal.

This movement to higher-level languages has yielded significant productivity increases. The rest of
Section 2.3 briefly describes examples of such languages, with insights into how they arose.

2.3.2 SPREADSHEEYTS

Spreadsheets have become increasingly popular 1.: the last decade. They excel in expressing complex
calculations. They relieve the user from having to worry about user interface arrangement, for they

16

2. Software Development in Industry Today

provide a standard. They allow tabular data entry and present data in that and a variety of other
formats, such as pie charts and bar graphs.

Spreadsheets are a simple example of programming in a restricted domain. Creating a spreadsheet
is, after all, a form of programming. It requires following a process not unlike that for software
development. The first task is to determine what information should be entered into the spreadsheet,
what information should be displayed, and the general appearance of that information. The second
task is to design formulas that calculate the results of the spreadsheet. The third task is to implement
that design by creating the skeletal spreadsheet. The fourth task is to verify that the implementation
works. These tasks, then, are the Requirements, Design, Code, and Test activities from Figure 2. The
average spreadsheet user may not perform them with the rigor of a professional software development
company, but the necessary activities are still the same.

There are, of course, many things spreadsheets cannot do. They are inherently two-dimensional and
are not well suited to data in three or more dimensions. They are not intended for esoteric functions
like real-time control or animation. These restrictions are deliberate. Companies began developing
spreadsheets when they realized how much information in today’s world lends itself to tabular presen-
tation. Many people were writing similar programs: no matter what data they manipulated, all were
working with calculations on two-dimensional data.

The inventors of spreadsheets therefore had two great insights. First, they recognized that many
people were writing programs to solve simifar problems: all had tables of data as inputs and, as
outputs, they had that data plus calculations derived from the input, presented in forms derivable from
the original two-dimensional format. Second, they realized that the calculations being made on the
input data did not require the power of a general-purpose programming language, but could be made
based on matrix algebra formulas and a set of predefined mathematical functions. The former insight
told them what problem they needed to solve. The latter provided themwith an elegant solution. They
had only to write the spreadsheet program. The users of that program could write their own
“programs” but did not need professional software development skills.

2.3.3 UsSER INTERFACE GENERATORS

Implementing the user interface has traditionally been one of the most difficult and time-consuming
parts of software development. In one study, Boehm, Gray, and Seewaldt (1984) discovered that, on
the average, over half the code in a program handles its user interface. This predated such modern
advancements as mouse-driven input and graphical windows full of color icons, so the figure is
probably higher now.

To complicate matters, traditional programming languages are terrible at representing details of user
interfaces—and creating a user interface is all about details. Programming languages are basically
one-dimensjonal, a long string of statements, whereas a graphical interface is two-dimensional and
hierarchical. Consider the following user interface requirement, which is fairly straightforward for a
person to understand:

The interface is to be divided into two windows. Window 1 is to be 3 inches wide and 4 inches high. It
will contain three buttons and one window for text entry. Window 2 is to be 1 inch wide and 5 inches
hi, ™. It will contain a text label and four buttons. Window 2 is to be positioned half an inch to the right
of window 1.

17

2. Software Development in Industry Today

This requirement has no simple representation in a programming language. Even though
unrealistically simple, it would be implemented by hundreds, if not thousands, of lines of code, when
one considers the complexities of handling inputs from both a mouse and keyboard (implied by the
requirements for buttons and text entry), for placing the windows, and for displaying outputs in them.

Also, the requirement is not nearly detailed enough. It says nothing about the appearance of the
windows and their contents. What celors are the windows? Do they have borders? Are the mouse
buttons round or rectangular? Simple decisions like these are tedious to describe as requirements and
more tedious to implement in a programming language. The person writing the requirements would
much prefer to use a picture like that in Figure 5, and the engineers implementing the interface would
prefer a more convenient representation than what programming languages offer.

[Window 1 ~Window 2——]

Status: Running

[Enter Text Here

Figure 5. A Pictorial Representation of an Application’s Interface Requirements

This has led people to study the domain of user interfaces. The common problemis the need to provide
an effective, easy-to-use interface. People at first proposed special interface-description languages
(Wartik and Penedo 1986; Hayes and Szekely 1983); but the real breakthrough came when someone
realized that:

¢ The most natural way to describe an interface is to draw a picture of it

* A program that supports drawing a picture of an interface has enough information available
to generate an implementation of that interface

The insights resulted in tools such as HyperCard, Visual Basic, TAE Plus, and many others. All are
based on the principle of software developers constructing the user interface by drawing a picture of
it, then writing the rest of the program in‘a standard programming fanguage which uses a predefined

18

2. Software Development in Industry Today

paradigm to obtain inputs and display outputs. (The paradigm depends on the tool and is beyond the
scope of this report.)

These tools have allowed developers to build software with remarkably complex interfaces in what
would once have been thought of as an inconceivably short time. The tools facilitate this because their
developers studied the domain of user interfaces and discovered how to describe variations among
interfaces. Their only drawback is that they inhibit flexibility. Software developers have a fixed set of
input and output media (buttons, text entry areas, forms, labels, etc.). In fact, this is not really a draw-
back, for using the tools results in interfaces with a common “look and feel.” Thus, the user of any tool
created using Visual Basic (used to create Figure 5) immediately identifies the shaded rectangles as
buttons and knows that pointing the cursor on one and pressing the mouse button invokes the action
indicated by the button’s label.

Once again, analysis of a domain has yielded an understanding of common problems and a means to
state solutions to those problems in a form more natural than a programming language. For spread-
sheets, the solution involved inventing a new programming language. Here, the statement is purely
pictorial; no written language is necessary. Either case points toward an important trend in software
development. Traditional algorithmic programming languages are intended to express algorithms; but
justabout any problem has nonalgorithmic aspects best expressed in a nonalgorithmic form. More and
more, people are creating such forms as a means to enhance software development productivity.

2.3.4 RAPID PROTOTYPING

Section 2.2 described the problems that stem from improper requirements—requirements that are
consistent and unambiguous, but describe the wrong problem. When a company designs and imple-
ments a solution to requirements, it makes a costly investment. If the requirements are wrong, the
results can spell financial doom.

To lessen the risk of solving the wrong problem, companies sometimes rapidly create a prototype
(termed a rapid prototype) from the requirements. They will ask a group of engineers to create, as
quickly as possible, a rough version of the system. The intent is to simulate the system’s external ap-
pearance (in particular, its user interface) and its functionality. The company can then use the proto-
type tovalidate whether the requirements address the intended probiem. If not, the company wiil have
avoided a large, costly mistake and will correct the requirements and the prototype until they are con-
fident they understand the problem. Theywill then produce an actual version of the system. For exam-
ple, URW might create a prototype litter-gathering robot with the necessary functionality but not
robustness. The Park Service would test it to see whether it was viable—have they correctly described
the concept of litter, or will the robot snatch a backpacker’s tent?

When a company creates a prototype, they do not intend it to be of marketable quality. If they did,
they would be creating an actual system rather than a prototype. The prototype is created to study
specific aspects of a system, such as user interface. Generally, the prototype does not include all the
functionality that the actual system will contain; a subset suffices to demonstrate the tool’s utility.

Prototypes are often written in special, very high level languages with constructs useful for
prototyping. Such languages result in small, easily modifiable programs. This is important in rapid
prototyping, because prototypes must change rapidly in response to changes in requirements.
{However, the programs often execute slowly; such s the price one pays for flexibility.) The languages
achieve their power by incorporating constructs from the domain in question. The language for

19

2. Soltware Development in Industry Today

programming Karel the Robot (Pattis 1981), used in the laboratory, illustrates this. Its purpose, from
a prototyper’s perspective, is to explore movement strategies. It lets the prototyper ignore such issues
as:

* How the sensors operate. The cornfield robot needs different sensor software (and perhaps
hardware) than the litter-gathering robot. Ears of corn are more or less alike and occur in
expected places. Litter comes in many shapes and sizes and can be anywhere.

» Details of motion. The Kare) programmer moves the robot using the MOVE instruction. The
real robot has to account for startup inertia, maximum velocities, and many other factors.

URW might use a language such as Karel to explore issues through a rapid prototype. The prototype
is based on the requirements, so the customer can study the prototype to help see whether the require-
ments are correct. URW and the customer use this information to revise the requirements and build
areal robot.

Many interesting rapid prototyping systems exist. Some examples are IDE’s Software through
Pictures and i-Logix’s StateMate. It’s worth noting that, as computers become faster and faster, what
was once an unacceptably slow rapid prototype becomes a viable software product.

o

3. AN OVERVIEW OF ARPA’S
MEGAPROGRAMMING EFFORT

The United States Government is very concerned about the software development problems
described in Section 2. A 1994 report to Congress (Paige 1994) stated that the Department of Defense
alone had spent $30 billion on software in 1990. It estimated that the department’s expenditures would
jump to $42 billion in 1995. This figure does not include other branches of goverrment, such as NASA
and the Department of Energy, which have their own considerable investments. Nor does it count the
commercial market in software, seen as one of the country’s key assets. It is no exaggeration to say
that the ability to produce quality software at a competitive price in the world market may determine
a country’s economic future. Hartmanis (1992) reports that software is already more than 5% of the
United States’ gross national product and growing—$51 billion in the corporate market alone,
according to Emigh (1994).

Because it routinely produces large software systems, the Department of Defense has traditionally
supported much of the country’s computer science and software engineering research. Much of this
research has been sponsored by ARPA. One of ARPA's most famous projects was the ARPAnet, the
first major national computer network and the source for many of the ideas in today’s Internet,

In 1990, to help fight the rising cost of developing and maintaining software, ARPA launched research
and development of megaprogramming. Megaprogramming is an approach to software development
that entails “building and evolving computer software component by component” (Boehm and Scher-
lis 1992), rather than line by line. Software developers avoid programming in the traditional way of
composing lines of code into a program. Instead, they make use of existing compenents: procedures,
functions, packages (in Ada), or classes (in C+ +). Components are the result of previous developers’
efforts. Thus, each new project tries to capitalize on the fruits of earlier labors, rather than creating
programs from scratch.

This is known as software reuse. Simply put, reuse of software means extracting pieces of existing
software and using them to create new programs. Such new programs consist partly of code created
expressly for the new program and partly of “reused” code. Many people today sce reuse as the key
to creating cheaper, higher-quality software. Using existing, already working code has clear
advantages.

Reuse is not a new idea. Mcllroy (1968) proposed the idea over two decades ago. Reuse may even
seem an intuitively obvious strategy for software development. In fact, it has been around ever since
the invention of the subroutine, which lets people reuse the same function in different places in their
code.

However, reuse on a large scale—across programs, between developers, or even on a nationwide
level—has been notoriously difficult. Many projects try it, only to find that reusing code results in
lower productivity than creating it from scratch. The following are some of the reasons why:

21

3. An Overview of ARPA's Megaprogramming Ef(fort

¢ People have different programming styles. A developer is usually not content to insert a chunk
of someone else’s code into her or his own program. The clash between styles lowers the
program’s readability, which reflects poorly on the developer. Nobody wants their code to be
unreadable.

¢ Realizing a need for reuse is one thing; finding code to fit that need is another. Establishing
“reuse libraries” has proven difficult. People have tried creating classification schemes akin
to those used in libraries; these schemes categorize software by function. However, these
schemes often fail because developers do not know the classification schemes well enough to
search for software.

Moreover, searching a reuse library generally yields code that performs a function similar to,
but not exactly matching, the need. Here the analogy to a library of books breaks down. A soft-
ware engineer hopes to find and reuse a complete procedure; a scholar looks to draw material
from portions of a book. A software engineer wants to use the procedure unchanged; a scholar
generally recasts the material in her or his own words. As an example, a Pascal programmer
who needs to sort an array of records cannot use a procedure that sorts an array of integers.
The programmer can modify the procedure, but that increases the risk of introducing errors,
subverting one of reuse’s advantages. The problem of exactly matching needs grows with the
complexity of the need and strategies for dealing with it (e.g., Ada generic parameters, C++
inheritance hierarchies) become increasingly less effective.

e Software developers have an unfortunate tendency to trust their own code and mistrust
everyone else’s. This attitude, termed the not-invented-here or NIH syndrome, stems from
their experiences with other developers’ buggy software and from their unshakable faith in the
supremacy of their own programming style. Given the choice between writing something
themselves or taking someone else’s code and verifying that it works, they claim the former
will wind up being simpler. They forget that their attitude toward others’ code is the same as
others’ attitude toward their code. Weinberg (1971) reacted strongly against this attitude and
coined the phrase “egoless programming” as the ideal that developers should adopt.

¢ The software world has adopted relatively few standards, and standards are what has allowed
reuse to succeed in other fields. In the United States, electrical sockets deliver 120 volts of
current alternating at 60 cycles per second. For this reason, televisions plug into the same
sockets as microwave ovens. Their manufacturers do not have to anticipate arbitrary electrical
power supplics, because the country has adopted a single standard. When a company designs
an clectrical appliance, its engineers can reuse an existing design for the power supply.

By comparison, few software standards exist. There are some exceptions. The X Window
System (Scheifler and Gettys 1986) provides a standard for client-server software.
DOD-2167-A (Department of Defense 1988) is a standard for documentation to accompany
the software development process. The systems in Section 2.3.3 define a standard look and feel
for user interfaces. However, no one has yet found a standard that, when followed, helps
people interconnect two arbitrary software components.

ARPA recognized these difficulties. Megaprogramming, therefore, tries a specific angle to help make
reuse work. It presumes a product line approach. That is, organizations must consider themselves to
be manufacturers of a line of software products, not producers of a single program. In fact, this usually
involves only a change of attitude and not one of production. If a company sells commercial software

3. An Overvicw of ARPAs Megaprogramming Effort

that runs on more than one type of computer—and most major ones do—it sells a product line and
not a single product. Its engineers must make different design decisions based on the target computer.
It must package the product according to the installation procedures appropriate to each computer.
It must create separate documentation for each package.

A contractual company does not operate this way; it creates software for a customer’s computer.
However, contractual companies acquire a reputation in specific areas and do business mainly in those
areas. A succession of contracts in an area makes a product-line view desirable. Suppose URW wins
three contracts: one for a litter-collecting robot for the U.S. Park Service, a second for a
search-and-rescue robot for the Alaska National Guard, and a third for a mineral-prospecting robot
for the U.S. Department of the Interior. Although the robots will differ in many ways, they will also
share many important similarities. URW’s ability to capitalize on those similarities—especially by
reusing software from one robot to the next—will determine how cheaply it can build each robot and,
hence, how competitive it can be. In other words, if a contract-oriented company views its products
as a product line over the course of several contracts, it can reuse software.

Megaprogramming demands one characteristic of software product lines: that all products in the line
share similarities. This is not necessarily the standard use of the term “product line.” A company in
the tool business might call its home construction and repair tools a product line. This could encom-
pass everything from a screwdriver to an air compressor. Megaprogramming employs the productline
concept to speed up software development based on similarities. Similarities between a screwdriver
and an air compressor are not immediately obvious. Therefore, such a product line would be of no
value in the megaprogramming approach.

ARPA believes that megaprogramming holds great promise for improving America’s ability to
develop software. It has allocated considerable research and development funding for
megaprogramming. ARPA first considered megaprogramming an advanced software engineering
technique, best learned by seasoned software developers. After further consideration, however, its
proponents realized that many aspects of megaprogramming were elementary and required no
experience. ARPA also came to believe that merging these concepts into the early computing courses
could present students with a more realistic picture of software development. Students would,
therefore, be better prepared to enter the work force as skilled software developers. Even those
destined for graduate studies or academic careers would benefit from knowledge of
megaprogramming, for they would have a fuller understanding of the problems in software
development than today’s graduates.

ARPA therefore initiated the Megaprogramming Curriculum Project. Its ultimate goal is to change
the computing curriculum to include megaprogramming concepts. If it is successful, students will
graduate knowing how to perform megaprogramming and will think of software reuse across a product
line as a natural and obvious way to develop software—quite in contrast to today’s start-from-scratch
mentality (see Section 5). This report and the Overview of Megaprogramming Course are the early
products of the project: an introduction to megaprogramming concepts and a rationale for their use.

3. An Overview of ARPA's Megaprogramming Effort

This page intentionaliy left blank.

24

4. MORE ON MEGAPROGRAMMING

So far the emphasis in this paper has been on the problems facing today’s software developers. Section
3 discussed how ARPA has recognized the problems and advocated megaprogramming as a solution.
Section 3 stated that megaprogramming is a product-line approach. It did not actually define
megaprogramming, though, and the purpose of this section is to do so.

The lecture defines megaprogramming (see Slide 1-8) but never gives a complete definition. Indeed,
the notes for Slide 4-12 end by asking students their opinions on the term’s meaning. The definition
in this section is deeper, not being confined to the format of slides and an accompanying page of notes.
It provides a fuller explanation of the key concepts and underlying issues. The material might be too
detailed for anintroductory lecture, but understanding it will give greater confidence when discussing
megaprogramming.

This section begins by discussing domains, a foundation of megaprogramming. It then uses domains
to present the definition of megaprogramming; this is accomplished by first presenting a scenario of
a company performing megaprogramming, then tying together concepts from the scenario to give an
actual definition of megaprogramming. The section concludes by showing how megaprogramming
improves an organization’s ability to develop software.

4.1 DOMAINS

Section 3 mentioned that megaprogramming is a product-line approach to software development, but
also pointed out that the definition for “product line” was not necessarily the standard one. In mega-
programming, all products in the line must share similarities. Understanding this concept is vital to
understanding megaprogramming.

The product-line approach in megaprogramming is based on the concept of domains. Section 2
introduced domains, but informally. The definition on Slide 2-4 omits some subtleties. Here is the
complete story. It is not a simple story; it requires understanding several other concepts, which will
be introduced presently.

4.1.1 CoNcEpTs OF DOMAINS

First, it may help to understand what a domain is met, since the word is in common use. A decidedly
informal and unscientific survey of the Consortium’s employees revealed that most thought domain
meant “home.” This meaning is not relevant to megaprogramming.

4. More on Megaprogramming

Webster’s gives six deftnitions for the word “domain.” Two are of interest:
1. Asphere of influence or activity.

2. The set of elements to which 2 mathematical or logical variable is limited, specifically the set
on which a function is defined. (This is the definition used in mathematics.)

Actually, the concept of a domain in software development has little to do with the use of the word
as it relates to functions. When mathematicians speak of function’s domain and range, they are refer-
ring to sets of entities, such as integers, real numbers, or strings. They are concerned with the relation-
ship between two sets. When software developers speak of a domain, they are interested primarily in
the set for its own sake, not its relationship to another set. In software development, a domain has no
associated range. There is no mapping from domains to anything else. Software developers concern
themselves with what makes up a domain and why.

So why give the second definition? The reason is that when discussing software, people speak of
domains as if they were a set of elements. Stide 2-4 mentions *“the domain of robots.” In the Unit 3
laboratory, students create software in the domain of robot control programs. Humans, it seems, feel
a need to assign short labels to large areas. Referring to the totality of concerns would be more
descriptive, but nobody has found a simple way to do it; instead, they assign a label that partially
describes the domain. So software developers face the same puzzle Alice faced in Lewis Carroll's
Through the Looking Glass:

“You are sad,” the Knight said in an anxious tone; “let me sing you a song to comfort you.”
“Is it very long?” Alice asked, for she had heard a good deal of poetry that day.

“It’s long,” said the Knight, “but very, VERY beautiful. Everybody that hears me sing it—either it
brings the TEARS into their eyes, or else—"

“Or else what?” said Alice, for the Knight had made z; sudden pause.
“Or else it doesn’t, you know. The name of the song is called ‘HADDOCKS’ EYES." ”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.

“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what the name is CALLED.
The name really IS ‘THE AGED AGED MAN."

“Then I ought to have said “That’s what the SONG is called?’ ” Alice corrected herself.

“No, you oughtn’t: that’s quite another thing! The SONG is called ‘WAYS AND MEANS;’ but that’s
only what it’s CALLED, you know!”

“Well, what IS the song, then?” sajd Alice, who was by this time completely bewildered.

“I'vms coming to that,” the Knight said. “The song really IS ‘A-SITTING ON A GATE; and the tune’s
my own invention.”

There may be many ways to label a song, but they don’t necessarily describe what it IS. Instead, they
describe some facet of it (all the titles are phrases from the song). Similarly, there are many ways to
label a domain. The one used most often is the one describing the domain’s most tangible, visible

4. More on Megaprogramming

product. For example, URW produces and sells robots, so its engineers would speak of “the domain
of robots.” Yet the user manuals, requirements specification, and design documents that URW
produces give a fuller explanation of the domain than anyone could glean from examining URW's
robots (how many people can operate a personal computer without ever consulting its user manual?).
So user manuals, requirements specifications, and design documents are equally part of the domain,
for they describe what is in the domain at least as well as does the set of robots URW builds.

Defining a domain as a sphere of influence or activity is more accurate when discussing
megaprogramming (Slide 2-4 uses the phrase “well-defined area™). Unit 4 hints at the reasons why.
When domain engineers define a domain, they study their company’s activities to determine what
programs are in the domain (Webster’s second definition again). But in software engineering, a
domain is more than just an arbitrary collection of programs. If two programs are to be part of the
same domain, then by definition they must have some similarities. (This is another reason why
definition 2 is not adequate. The domain of a function can be an arbitrary set.) Domain engineers,
therefore, need criteria to determine whether two programs are related.

They derive these criteria by thinking of their company’s products as solutions to the problems their
customers face. To define the criteria, then, a business must first understand its customers’ problems.
The details of problems depend on a company’s business. Some are technical. A chemical engineering
company might develop software to control its chemical production—opening and closing valves,
monitoring fluid flow, and checking pipe pressures. The software will be a morass of thermodynamic
equation calculations. An aerospace company might develop satellite control software, full of
navigational and positional computations.

4.1.2 INFLUENCE OF DOMAIN ON SOFTWARE DEVELOPMENT

The technical problems mainly influence software design. Other problems are not technical and tend
to exert more influence on what the software does (the difference between requirements and design,
discussed in Section 2.1). Before deciding how to manufacture chemicals, a company must first decide
what chemicals to manufacture. Before writing satellite control software, a company must determine
what types of satellites it’s going to control. In other words, a company should decide its market before
it starts developing products. This decision bounds the set of problems domain engineers must define
and solve.

But companies do not always use domain engineering (i.e., 2 megaprogramming approach) to solve
problems. They only do so when they expect to set up a product line. Figure 6 helps show why. When
a company first realizes the potential for sales in a market, it establishes a business area—that is, an
organization tasked to conduct business in that market. This organization wiil study the market and
determine the problems tobe solved for business to succeed in that market. The organization will then
propose solutions. It may decide that the most effective way to compete in the market is to offer a prod-
uct line. If so, it will define the scope of the product line: the exact set of products to bring to market.
A Domain
Market —3 Business Area —3 Product Line l
\ Product Family

Figure 6. Relationship of Market to Domain

It must then determine the most effective way to manufacture all the products in the line. If the
products all seem similar, the company will conceive of them as a domain and use domain engineering

27

4. More on Megaprogramming

techniques to implement process support (see Slide 4-2). Process support is whatever helps the
company manufacture products in the product line. It consists of three parts:

¢ Aproduct family. This is the set of programs (and related entities, like the requirements and
design) that are in the domain.

¢ The application engineering process for producing products. This is what Slides 3-5 through
3-7 describe for the robot domain. The application engineering process tells how to use the
product family to build products.

e Software to support using the application engineering process. The software for the Unit 3
laboratory is an example of such software. It references files in the directory hierarchy rooted
at GEN\AC (relative to the directory where the laboratory is loaded); these files constitute
the product family of robot control software.

Based on these concepts, a domain can be defined as process support for a product line.

Note that the lecture notes do not use the term “product family,” instead referring to a domain as if
it were a product family. This is a simplification. A product family is one facet of a domain. Under-
standing this is important to understanding megaprogramming. However, it’s mainly relevant during
domain engineering; it’s therefore not important for the course, which covers domain engineering
lighdy.

As it builds the product family, the organization takes advantage of the similarities among solutions
to probiems in the domain. This helps it build all product-line members more efficiently thanif it tried
to build them all separately. This strategy only works when there are many similarities among mem-
bers in the product line. The home construction tools example in Section 3 illustrates a product line
that is not a product family. It cannot be studied as a domain, so building process support is not an
appropriate strategy for manufacturing home construction tools.

Note that the organization does not actually build products when it builds the product family. It builds
the capability to build any product in the product line. To understand this, consider an automobile
manufacturing company—indeed, even a single model within a company. Even a single model has
many variations, such as its color and the factory installed options. The company does not want a sepa-
rate production procedure for each possible variation, though. Imagine how much more automobiles
would cost if red and blue cars had to be made completely separately. Therefore, the company builds
an assembly line capable of incorporating such minor variations. This assembly line is the product fam-
ily. The company uses the product family (assembly line) to build products (automobiles). In this way
it performs its business more effectively, making itself adaptable to a wider market.

By doing domain engineering, a company commits itself to activities in a well-defined area. This is the
relevance of Webster’s second definition of domain. That definition is still not wholly accurate, since
it does not imply similarities, but it is conceptually significant.

In summary, defining a domain through domain engineering shows an organization how to satisfy a
variety of customers in a market. That market also helps the organization understand why and how
the domain will evolve in the future. And domains do evolve, just as individual programs evolve. Slide
1-4 shows Operation and Maintenance as part of the big picture of software development. It omits the
simple fact that, by the time software is finally retired, the money spent on maintenance has dwarfed
that spent during the initial development. Most software development occurs during maintenance.

4. More on Megaprogsamming

Evolution of products has many causes. The most obvious is that companies want initial development
to be as quick as possible, whereas they hope their product will be salable for a long period—all of
which is termed “maintenance.” Whatever the cause, it follows that software developers must be able
to modify software: to redefine the problems and solutions in the domain. People redefine problems
by understanding the market, predicting changes in it, and defining how products should evolve in
response to those changes.

4.2 DEFINITION OF MEGAPROGRAMMING

Now that domains have been explained, it is time to present a definition of megaprogramming. This
section will give a better feeling for what megaprogramming is and how it affects an organization.

4.2.1 A MEGAPROGRAMMING SCENARIO

Consider URW again. Section 2.1 presented contractual and commercial software development
scenarios for URW. The practices in these scenarios are typical of how many companies develop
software today. Section 2.2 discussed reasons why URW’s practices might cause difficulties. Suppose
URW adopts megaprogramming. What will it do differently?

Many of URW’s problems stem from the independence among its projects. The two projects in
Section 2.1 operated as if they were parts of different companies. They did not share information—at
least, not in any formal, documented manner that could be presented in the scenarios. This is despite
the many similarities that probably exist between the two projects. The robots may be different, but
they are part of the same domain. So URW decides that its product line is a product family and opts
to build process support to help it manufacture robots more efficiently.

To achieve this, URW must reorganize itself into something resembling Slide 4-12. URW will create
a separate domain engineering group. This groupis responsible for creating, monitoring, and improv-
ing the process support. Each time URW receives an order for a robot, it will start an application engi-
neering project, as before. The difference is that the application engineering project will use the
process support. Using it entails following a special, domain-specific application engineering process
like that in Slide 3-6, not a general one like in Figure 2.

The course laboratory illustrates application engineering when following such a process, so it won’t
be discussed here. The important point is that it's a process tailored to the domain. Application engi-
neers develop software mainly by thinking about problems in the domain. They think about such prob-
lems in any software development process—in Section 2.1, they developed a software requirements
specification, which amounts to the same thing. However, the application engineers using process sup-
port don’t develop the complete requirements specification. They only describe how the family mem-
ber they want to build differs from other family members. This is a small part of the whole
specification, so URW saves time and effort. Furthermore, the application engineers’ difficult work
ends once they have described the problem. The rest of software development is mechanical, derived
entirely from the problem statement.

This strategy works, as the notes for Slide 3-3 mention, because application engineers are experts in
the domain. They possess an intuitive understanding of the properties common to all family members.
They understand, or are able to determine, the implications of a variation among family members.
For this reason, Unit 3 tries hard to make students semiexperts in the robot domain prior to their
laboratory experience.

4. More on Megaprogran ning

Ir’s worth noting that, in reality, URW’s application engineers could not generate complete, working
software autornatically based on their problem statement. The process support is only as good as
URW’s domain engineers’ predictive abilities. Customers will almost certainly demand variations
URW had not anticipated. Toshiba, a Japanese company that builds power plants, instituted a form
of megaprog.amming and found they could generate about 70% of their software automatically. Since
each power plant required over one million lines of code, they reaped incredible savings—but they
still had to develop 300,000 lines of code for each new project. URW's engineers would face similar
situations. To keep the introduction to megaprogramming simple, the course’s laboratory glosses over
this point and generates 100% of the software for the students.

Application engineers follow a domain-specific process. Domain engineers do not. They use a
software development process quite different from cither the application engineering process or the
one in Figure 2. The objective of this process is to create, field, and enhance a product line—what the
slides term process support. Figure 7 shows this process; the text following Figure 7 explains it, activity
by activity.

* Domain Management. URW begins domain engineering by starting with the Domain
Management activity. Here, URW decides what process support it wants to build. This is a
critical business decision. It determines what markets URW will try to capture. The result of
this decision, expressed as the domain plan, determines URW’s business direction for the next
several years. The domain plan guides domain engineers in all their other activities (hence the
nested boxes).

* Domain Analysis. URW begins the Domain Analysis activity after making the decision on what
process support to bujld. The goal of Domain Analysis is to produce a specification of the pro-
duction line. URW will task a group of experts in the domain of robots (domain engineers) to
study the problems that robots must solve and to uncover the similarities and differences
among these problems. The domain engineers will use this information toward two ends:

— To describe the application engineering process.

— To specify the properties of a solution to any of the problems in the domain. That is,
they have described a family of probiems. They describe a family of solutions, one solu-
tion per problem, and describe the relationship between the two families. Thus, if an
application engineer describes a problem, the domain engineer has provided a means
to identify a solution.

* Domain Definition. Domain engineers produce the specification in two steps. During the first,
the Domain Definition activity, they produce an informal description of the domain.

¢ Domain Specification. Domain engincers use the domain definition during the Domain
Specification activity, when they produce the more rigorous domain specification. The domain
definition is deliberately short on details; the domain specification is sufficiently precise to
serve as a requirements specification. The domain definition is small and focuses on concepts;
the domain specification is much larger and lets a domain engineer answer any question about
the problems and solutions in the domain. This paradigm of refining an informal description
is a common engineering design strategy.

This has briefly described the process domain engineers follow to create the products shown in
Slides 4-3 through 4-10. Note that the domain engineers have not created any software at this point.

4. More on Megaprogramming

They have only described problems that software they create must solve, and have described the
architecture of proposed solutions.

Domain Knowledge
Business Objectives
Domain Analysis
Domain Domain
Management Definition
- Domain
Domain Definition
Plan
Domain
Specification
Domain Domain
Specification Implcmentation
y
Domain /——j .
Verification Doruain Implementation
(Application Engineering
Process Support)
Support
Legend
|
!
v

to Application Engineering

Figure 7. The Domain Engineering Process

Domain Implementation. With the domain specification in hand, domain e zineers begin the
Domain Implementation activity. Here, they build the process support that application engi-
neerswill use. This involves building the product family, defining the wpp.ication engineering
process, and developing the software to assist in process support. In more detail:

— The product family consists of reusable software components. These are based on the
architecture developed during domain analysis. The domain engineers will implement
a software component for each box in the architecture (see Slide 4-6). Note that the
architecture itself is not part of the software, any more than a building’s architecture
is part of a building.

31

4. More on Megaprogramming

— Theapplication engineering process describes the process for specifying requirements
(precisely stating the problem, see Slide 4-5) and the generation procedures (see Slide
4-11). Generation procedures are an exact description of the relationship between a
problem and its solution. Application engineers, once they have stated a problem, will
use the generation procedures to produce the software.

— Developing the software that automates the process support is a miniature software
development process in its own right. URW tries to determine which activities of the
application engineering process are most likely to introduce errors. It then studies
those activities and, where practical, automates them. In the laboratory, adapting the
reusable software components to satisfy a particular problem statement is one of the
most difficult tasks for humans to perform. It is not a complex task, just a tedious
one—describing how to do it manually would sometimes require hundreds of
instructions. It has therefore been automated.

» Domain Verification. Domain engineers then determine whether the process support satisfies
the domain specification. This is analogous to testing in a conventional project, but domain
engineers must see if each problem in the domain has a correct solution, rather than checking
a single solution against a single problem.

* Project Support. In addition to these activities, the domain engineering group acts as a support
organization with respect to application engineering projects. Domain engineers are responsi-
ble for setting up the production line and helping application engineers use it. They are also
responsible for noting, and correcting, deficiencies in the process support.

The result of all this is that URW has launched a set of concurrent iterative processes. Domain
engineering is not a simple progression of steps, as in Figure 2. The results of domain engineering feed
back into the initial activities of domain engineering as domain engineers evolve the domain. Thus,
each domain engineering iteration results in improved process support. URW can better position
itself for future sales as a result of this effort. At the same time, an application engineering project
responds to its changing customer needs—whether that of an individual customer or of an entire
marketplace—by refining its problem statement and building new, improved versions of a product.
Each application engineering iteration resuits in a new product.

4.2.2 WHAT Is MEGAPROGRAMMING?

URW has used megaprogramming to develop products. That is, it has achieved a capability to seil a
variety of products in a changing marketplace by doing the following:

* Appealingto a wide customer market by thinking in terms of a product line rather than asingle
product

¢ Realizing that there are many similarities among its products and taking the time to study
these similarities

¢ Exploiting these similarities by implementing process support

When a company takes these three actions, it is practicing a megaprogramming approach to software
development.

32

4. More on Megaprogramming

There are four key concepts in megaprogramming:

Product Families. A family is a set of things that are sufficiently similar that it is worthwhile to
understand the common properties of the things before considering special properties of spe-
cific instances. Domain engineers think in terms of product families, rather than in terms of
individual products. By doing so, they anticipate a range of needs. This helps a company like
URW plan for the future as well as the present. It has helped companies like Microsoft Corpo-
ration make such products as Word and Excel work on a range of computers. (That is, there
are several versions of Word, each of which onerates on a different platform. Each version is

a product. The set of all versionsisay . It’s also important to someone develop-
ing software for their personal computc;« stive tounderstand the nature of the problem
at hand.

Iterative Processes. Any organization, software or otherwise, should expect to use iterative
processes. Experience is the best teacher, says the old saw, and has proven the only reliable
way to diagnose trouble spots in a production capability. (Henry Ford first had lines of workers
moving between stationary cars, rather than cars moving between stationary workers.) Quality
software is inevitably produced only through successive iterations of specification, design, and
implementation activities. The company or individual that uses an iterative process recognizes
the difficulty of writing the requirements for a useful product without having built and used
it, or of keeping up with ever-changing technology. Companies that write operating systems
understand this need very well. As of this writing, Microsoft Corporation has produced six
versions of DOS, Apple Computer seven versions of its Macintosh operating system.

Specification. A specification is a precise description of the properties needed of some entity,
such as a program. Of particular interest are specifications of requirements. If the require-
ments specification really is precise—not an informal description in English, but something
akin to the set of decisions in the laboratory—then it can be used as the input to a generation
procedure, from which software can be generated automatically.

Reuse. Constructing software from existing components reduces cffort and increases
reliability, two of the great software engineering problems. This seemingly simple panacea is
made complex by the difficulty in integrating components drawn from arbitrary sources.
Domain engineering, and the standardization that results from it, greatly increases the ability
to reuse existing software components.

Megaprogramming stresses engineering concepts. Much of its power comes through instituting
standards—as Section 3 mentioned, other disciplines are far ahead of software engineering in doing
s0. The analysis of similarities during domain engineering is, in effect, specifying standards for the
domain: standard requirements (what is common to all problems in the domain), standard designs
(the architecture in Unit 4 shows what is standard to all designs in the domain), and standard
implementations (components shared among all robots establish standard algorithms).

4.2.3 PERSPECTIVES ON MEGAPROGRAMMING

The original ARPA definition of megaprogramming stresses the product-line approach to software
development. The description in this section is but one way to achieve a product line. It is based on
asoftware engincering approached called Synthesis, developed by the Consortium. Synthesis hasbeen

33

4. More on Megaprogramming

used successfully on several industrial projects. More information is availabie in the Reuse-Driven
Software Processes Guidebook (Software Productivity Consortium 1993).

Other researchers have taken a different approach to megaprogramming. Space limitations preclude
discussing them here (see STARS [1992]).

4.3 BENEFITS OF PRACTICING MEGAPROGRAMMING

Section 2.2 described five significant software development problems. Megaprogramming will not
always solve the problems, but practicing it can significantly alleviate many or all of them. This section
explains how megaprogramming helps organizations cvercome each problem.

Expressing software requirements. Application engineers practicing megaprogramming have
two advantages. First, because they describe a problem in terms of how it differs from other
problems inits domain (see the laboratory), they reuse requirements instead of having towrite
them from scratch. They have fewer choices to make and, thus, are less likely to make an incor-
rect choice. Second, the requirements they create are precise enough to allow rapid prototyp-
ing (this is essentially what goes on in the course laboratory: the students create and execute
a rapid prototype of the robot’s control software). This means the application engineers can
show a model of the system to customers at the time the requirements are written, rather than
having to wait until after the system is implemented. Customers can immediately point out
deficiencies and misunderstandings. Consider Slide 1-6: fixing a requirements error during
testing costs four times as much as fixing it during requirements. Practicing megaprogramming
helps application engineers find errors during requirements.

Following a software development process. Much of this difficuity stems from the generality of
the waterfall software development process so widely used today. This process gives only gen-
eral guidance and does not direct the day-to-day activities. The reason it is so general is that
adding more detail requires making assumptions about the type of software being devel-
oped—in other words, about the domain. Domain engineers are tasked to add exactly thisin-
formation to the process they create for application engineers. Application engineers,
therefore, have a very detailed process to follow.

Keeping requirements and documentation up to date. This problem often arises not so much from
bad intentions as from neglect: no one is explicitly tasked to do the job. An organization that
practices megaprogramr ing explicitly recognizes the need to keep requirements and docu-
mentation consistent with code. Domain engineers are responsible for developing and main-
taining standards for the domain. This includes documenting the standards and keeping them
up to date.

Grasping software design. Megaprogramming helps here by placing the design in a
domain-specific context. Often, understanding a design is simply a matter of evolving a
standard, common terminology and set of descriptive techniques. These tend to be a natural
by-product of multiple iterations of domain analysis.

Resisting change. Much of the strategy in domain engineering involves planning for change,
attempting to anticipate and soften its effects. Of course, industry must be prepared to adopt
megaprogramming, which is in itself 2 major change. However, organizations that have tried
and stuck with it report improved productivity (O’Connor et al. 1994).

5. THE NEED FOR MEGAPROGRAMMING IN
HIGH SCHOOLS AND UNIVERSITIES

The previous sections have shown megaprogramming’s potential importance as an industrial software
development approach. Industrial practices are not necessarily suited to classroom settings, however.
Many megaprogramming details are relevant to a large corporation but not in a classroom. These de-
tails arise because corporations engage in huge multiyear projects, which are simply not practical for
students.

Nevertheless, the Megaprogramming Curriculum Project believes teachers should introduce
megaprogramming into their courses. This section will explain why.

5.1 THE CURRENT CURRICULUM: STRENGTHS AND WEAKNESSES

Section 1.1 discussed the current computer science curriculum briefly. Understanding
megaprogramming’s importance in academia requires a more thorough analysis.

The discussion that follows concentrates on the first computing course. This course’s content scts the
stage for students’ remaining education in computing and therefore plays a fundamental rble. Subse-
quent courses—data structures, operating systems, etc.—build oniits content. Changing it necessitates
changing the rest of the curriculum. It therefore deserves special study.

A survey of model curricula (Larson and Stehlik 1990; Tucker et al. 1991; Merritt et al. 1993) shows
that the first course emphasizes the following topics:

* Programming Language Notation. To write a program, a student must master the nuances of a
programming language’s syntax and must feel comfortable expressing algorithms using that
syntax.

* Algorithms. A student learns sequencing, conditional execution, and iteration very early in the
course—sometimes within the first two weeks, if teachers are using a special language such
asKarel the Robot. A student spends much of her or his first year learning specific algorithms
to be used in conjunction with recently introduced language features. For example, many
teachers introduce sorting algorithms almost as soon as they introduce arrays.

* Data Structures. A student learns about arrays, records, pointers (less frequently), and how to
use them to create certain simple abstract structures, such as trees or stacks.

* Programming Methodology. A student learns approaches to software specification, design, and
verification. The coverage of specification is necessarily brief because students lack the
mathematical background necessary to grasp most specification techniques. The emphasis

35

5. The Need for Megaprogramming in High Schools and Universities

during design is on top-down decomposition methods, such as structured programming and
information hiding. During verification, students learn testing techniques and an informal
version of axiomatic verification.

This emphasis on programming methodology does not extend to teaching software process
concepts, despite the obvious overlap. Several of the model curricula present software design
concepts, but none expect students to separate design from implementation.

These topics, as Section 1.1 mentioned, have formed the basis of the introductory computing course
almost from the very beginning. To be sure, the course’s content has not been static. Context-free
grammars let teachers explain syntax quickly and precisely. Algorithms were once presented as
flowcharts (the effect of which was mainly to make students grasp a second notation); now teachers
use structured programming concepts. Programming methodology is now understood much better:
teachers can show how stepwise refinement leads from requirements to a workable design.

The Megaprogramming Curriculum Project believes these topics are still valid—writing software
requires mastering a formal notation and using it to express algorithms. However, the project
questions the emphasis placed on them, as opposed to certain other topics, and the manner in which
they are introduced.

Paradoxically, the reasons why stem in part from the course’s strength: students who take it are able
to write simple programs in an arbitrary application area. This is an excellent model for a high school
or university. Instructors in areas like chemistry, physics, or civi! engineering—not to mention com-
puter science—can assign their students computationally intensive problems after the students have
had only a single course in computing. Indeed, the student who knows sequencing, conditional execu-
tion, and iteration can construct an algorithm to solve any solvable problem-—a well-known theoreti-
cal result in computer science (Bohm and Jacopini 1966). Few other disciplines offer such a general
and powerful introductory course!

This generality comes at a price. Students completing the first course have the following perspective:

* They vlace too much emphasis on the programming language they have learned. This is a natural
consequence 6: their struggle to learn a new notation. A language like Pascal has a complex,
unforgiving syntax. One of their first major problems is learning that syntax, so they attachim-
portance to the language syntax rather than the semantics—that is, the ease of expressing algo-
rithms in it. By contrast, the skilled software developer can learn the syntax of any
programming language in a day or two.

® They think of a program as an algorithm. Experienced software developers, however, realize
that a program consists of a set of modules. They use modules as the basis for contemplating
and expressing software design; designs of programs based on algorithms have not proven sat-
isfactory. Because engineering is not possible without a design, software development without
a design will never be a disciplined activity.

¢ They think of software development as consisting of coding and testing. This paper has discussed
the steps of real software development in depth and has shown them to be far more complex
than just these two steps. Experienced software developers see coding as a largely rote activity
that follows design. Furthermore, perceiving the cyclic nature of software development,
developers recognize maintenance and the problems it causes and try to plan for it.

5. The Need for Megag

g ing in High Schools and Unj

¢ Theylack a sciewific basis to analyze the software they produce. Most high schools and universities
teach a course called “Introduction to Computer Science,” but they teach little or no science
during the course. Roughly speaking, computer science enables someone to assess the quality
of a computer program. Here, quality can be defined in terms of many factors: execution
speed, memory use, user interface friendliness, reusability, and degree of fidelity to the re-
quirements, to name a few measures. Most introductory courses only teach students to test
their software, and not in any systematic way. Other issues are ignored. Most students never
practice adisciplined, scientific approach to software development. Experienced software de-
velopers try to be as disciplined as they can, scientifically analyzing their software design (not
implementation.

This discussion should not be taken to mean that the current content of introductory courses is easy.
Formal syntax concepts and algorithmic problem-solving are difficult skills and require time to mas-
ter. The difficulty is making sure that students do not see these as the only obstacles to writing soft-
ware, or even the main obstacles. People with this perspective grasp only a small part of what software
development is all about and require extensive retraining to be successful in the work force.

Even given these problems, it’s worth questioning whether to make any changes to a curriculum that
does a generally good job of serving the community. The Megaprogramming Curriculum Project be-
lieves that the current model has its place, but mainly for a service course. Those students who intend
to become professional software developers (or even computer science researchers) would benefit
from a curriculum that teaches more about how software is actually developed.

5.2 BENEFITS OF MEGAPROGRAMMING FOR STUDENTS

The Megaprogramming Curriculum Project believes students will benefit from learning
megaprogramming in four ways:

* They will learn to see software development as an exercise in science and engineering. This
paper has shown how megaprogramming fosters a disciplined approach to software develop-
ment. Students who learn megaprogramming will be able to produce better software—and will
be able to back up claims of quality.

* Theywill be able to woi k un more complex systems. Megaprogramming encourages reuse, so
students can reuse existing software that performs complex functions. The laboratory in the
Overview of Megaprogrammang Course demonstrates this point. Students create reasonably
complex robot control sottware by reusing existing software components. Examples of this na-
ture are more exciting than typical student projects; as a result, students’ motivation will be
increased.

* They will learn more about what software development is really like. This makes them better
prepared for their careers.

* Their perspective toward software development will be holistic. Megaprogramming
encompasses all aspects of software development. The instructor can introduce any
software-related topics, and can tie them together. Most schools teach at least some software
engineering topics. (e.g., programming methodology, as discussed in Section 5.1) but, lacking
a complete approach such as megaprogramming, do not let students understand the full
importance of the topics.

37

S. The Need for Megaprogramming in High Schools and Uni

5.3 WHY IN THE FIRST COURSE?

Many undergraduate institutions teach megaprogramming concepts. Students often take a software
engineering course in their third or fourth year and learn about software processes, software architec-
ture, etc. The Megaprogramming Curriculum Project believes that these concepts should be
introduced in the first course, even in high schools. Is this really the correct place for them?

A survey of recent conferences in software engineering education (e.g., Diaz-Herrera 1994) shows a
trend toward teaching software engineering concepts earlier. Educators complain that, in the current
curriculum, students’ early education appears to stress the wrong skills. Their abstraction abilities—so
crucial 1o expressing and communicating specification and design concepts—are poorly developed.
Their software development techniques are not suited to real projects. As a result, one of the software
engineering course’s major goals is to make students forget the improper skills they have acquired.

Some secondary considerations support introducing megaprogramming early. Interest in computer
science as a major dropped considerably during the past decade (Gries and Marsh 1989). One solution
to this is to provide students with more interesting problems. As discussed in Section 5.2,
megaprogramming increases the size and complexity of the software students can be expected to
create.

The Megaprogramming Curriculum Project may also been seen as an experiment in finding the
correct amount of theory to introduce in the first course. Computer science educators have always
been interested in this. The University of Maryland is a noteworthy example (Mills et al. 1989). Their
first course introduces students to the more mathematically oriented aspects of computer science and
software engineering, such as axiomatic program definition and formal program verification.

The Megaprogramming Curriculum Project is striking a balance between this extreme and the
mainstream approach. In megaprogramming, the science comes more from the application domain
than from the pure mathematics associated with computer science. The student therefore learns to
see rigorous, quantitative analysis as a natural part of software development. However, the student
needs no special mathematical background.

5.4 BENEFITS OF TEACHING THE OVERVIEW OF MEGAPROGRAMMING COURSE

Now that the benefits to the students have been explained, it remains to discuss what the instructor
may expect from teaching the Overview of Megaprogramming Course. This course, as the name implies,
is not a complete course in megaprogramming. After taking the course, the student:

* s an application engineer, for the domain of robot control software
* Has an appreciation of the important issues in industrial software development

¢ Has learned the concepts of megaprogramming, a new and exciting approach to developing
software

These concepts include application engineering and domain engineering. The course teaches the
student how to perform application engineering in a particular domain. It deliberately omits any
discussion of how to perform domain engineering. This complex topic is beyond the scope of an
overview course. (The Megaprogramming Curriculum Project hopes to create, or encourage

5. The Need for Megaprogramming in High Schools and Uni

instructors to develop, subsequent course units that will teach students how to perform domain
engineering.)

Despite the course’s brevity, the instructor who teaches the course should find that her or his students
have a more realistic understanding of the role software plays in complex systems and of the
difficulties in developing it. By using a hypothetical company, and by providing considerable detail on
that company, the course tries to show all of the major considerations that influence software. Often,
these considerations are not technical but, as the laboratory shows, economic. Nor do they always have
obvious, clearly defined answers. Software practitioners must be able to justify their decisions. The
Overview of Megaprogramming Course provides exercises to help them realize this.

The Megaprogramming Curriculum Project also hopes that teaching the course will help instructors
become more aware of the states of the art and practice in industry. The course, including this
document, serves as a sort of liaison between industry and academia.

Teachers who have taught the course have reacted positively toward it. Some have begun to
incorporate its concepts into their regular materials. The Megaprogramming Curriculum Project is
pleased by this initiative, for it shows that the teachers consider the material valuable and a
fundamental part of a student’s education. The project hopes that, through actions such as this,
megaprogramming materials will continue to influence the computing curriculum.

is and Uni

5. The Need for Megap

in High Sch

This page intentionally left blank.

40

APPENDIX A. RELATION OF LECTURE SLIDES
TO THIS REPORT

This report makes many references to slides from the lectures. Someone preparing to lecture on this
material may appreciate inverse references: which sections of this report explain the material of a
given slide. Table 1 presents that information.

Table 1. Mapping of Slides to Sections in This Report

Slide Section(s) in Report Slide Section(s) in Report
1-2 21 35 41,421
13 21,22,23 36 22
1-4 2.1 3-7 421,422
1-5 2.1 42 42
1-6 22 43 41,421
1-7 21 44 41,421
1-8 42 4-5 421,422
22 41 4-6 421,422
23 4.1 4-7 421,422
24 231,41 4-8 421,422
2-5 3,42 49 421,422
2-6 4.1,42,43 4-10 421,422
32 21,421 4-11 421,422
33 41,421 4-12 422
34 41,421

41

Appendix A Relation of Lecture Slides to This Report

This page intentionally left blank.

42

APPENDIX B. STRUCTURE OF THE OVERVIEW OF
MEGAPROGRAMMING COURSE

The Overview of Megaprogramming Course is organized into four units and takes approximately 1 to
2 weeks to cover. This appendix briefly describes each unit.

B.1 UNIT 1: SOFTWARE DEVELOPMENT

The first unit discusses how today’s companies develop software. It shows data that justifies the points
it makes about what software development is really like. It covers important software development
concepts, mainly process and requirements.

This unit uses the concepts of process and requirements to motivate the need for reuse and
megaprogramming. A simple chart of the megaprogramming process helps students to put the rest
of the course in the proper context. An in-class exercise asks the students to try writing complete re-
quirements for simple, everyday problems, thereby showing them how difficult the requirements step
is. This unit introduces the vending machine example, which will be used throughout the course. For
their homework assignment, the students devise a set of requirements for the vending machine.

B.2 UNIT 2: CONCEPTS OF MEGAPROGRAMMING

Unit 1 covered general software development concepts. This unit introduces concepts specific to
megaprogramming.

It presents software development as a process of analyzing a problem and implementing a solution.
It then defines domains, shows how domains support reuse, and discusses domain engineering and
application engineering. In-class exercises for this unit have the students identify whether or not
simple, everyday classes of applications are domains. For the vending machine problem, the students
combine their requirements, identify similarities and differences among their different vending
machines, and identify those components that can work for all vending machines. For homework,
students identify what components they need for their own vending machine.

B.3 UNIT 3: APPLICATION ENGINEERING

This unit shows students what software development is like when using megaprogramming. The unit
introduces problems associated with robot control software. Students learn how megaprogramming
helps them produce such software.

At the end of this unit, the students are given a laboratory exercise. They must carry out application
engineering in the robot control software domain. They are taught about URW, the hypothetical

43

-

Appendix B. Structure of the Overview of Megaprogranming Course

company from Section 2. The students build the software for three customers: a farmer who needs
corn harvested, a representative from the Alaska National Guard who wants search-and-rescue
robots, and a National Park Service ranger who wants robots that can pick up litter. The application
engineering process the students follow shows them the commonalitics among the software
requirements for these seemingly disparate robots—although it also calls their attention to the
specific differences. The software solutions they generate are constructed purely from reusable
components. They integrate these components according to a domain-specific software architecture
and can, therefore, see the similarities and differences among implementations as well. Robots in this
domain are all similar in that they search autonomously for some type of ohject. However, they differ
based on such characteristics as the terrain they search (field, tundra, or forest), the types of objects
for which they search (corn, people, or litter), the actions they take on finding an object (pick up and
return, locate only, continue indefinitely), their search strategy (zigzag or sweep), and their initial
amount of energy (in joules). The application engineering process asks the students to reason about
robots in terms of these concepts. Students must also make quantitative comparisons of robots based
on a cost model that is provided and an execution environment that simulates the time and energy
needed to perform a mission. Students vary certain quantities and see the relative effects on a robot’s
cost and the time needed to complete a mission.

The laboratory exercise is built on top of the Karel-the-Robot concepts developed by Pattis (1981).
A frontend to an existing Karel implementation asks the students to make decisions that differentiate
one robot from other robots within the domain as described in the previous paragraphs. Based on the
decisions, the students then use the environment to generate robot software from the reusable
components within the domain and to simulate the robot moving through the specified terrain
performing the specified mission.

B.4 UNIT 4: DOMAIN ENGINEERING

This unit discusses what a company must do to achieve the software development capability the
students saw in Unit 3, defining this as domain engineering. Because of time constraints, the unit
covers what but not how.

The unit covers the information domain engineers use to define a domain and aspects of the support
domain engineers provide for the application engineer. The exercise for this unit helps the students
see how they can use megaprogramming in the development of vending machines. An examination
evaluates their mastery of the material.

ARPA
NASA
URW

LIST OF ABBREVIATIONS AND ACRONYMS

Advance Research Projects Agency
National Aeronautics and Space Admsaistration

United Robot Workers, Inc.

45

List of Abbreviations and Acronyms

This page intentionally left blank.

46

Backus, John
1978

Boehm, Barry
1981

Boehm, Barry, Terence Gray,
and Thomas Seewaldt
1984

Boehm, Barry, and
William Scherlis
1992

Bohm, Corrado, and
Guiseppe Jacopini
1966

Brooks, Frederick
1987

CACM
1985

Coad, Peter, and
Edward Yourdon
1990

Datamation
1994

Department of Defense
1988
Diaz-Herrera, Jorge

1994

Emigh, Jacqueline
1994

REFERENCES

The History of FORTRAN I, II, and I11. SIGPLAN Notices 13,
8:165—-180.

Software Engineering Economics. Englewood Cliffs, New Jersey:
Prentice-Hall.

Prototyping vs. Specifying: A Multi-Project Experiment. [EEE
Transactions on Software Engineering SE-10, 3:290-302.

“Megaprogramming.” In Proceedings, DARPA Software
Technology Conference. Los Angeles, California.

Flow Diagrams, Turing Machines and Languages with only Two
Formation Rules. Communications of the ACM 9:366—-371.

No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer 20, 4:10—19.

A Debate on Teaching Computer Science. Communications of
the ACM 32:1397-1414.

Object-Oriented Analysis. Englewood Cliffs, New Jersey:
Prentice-Hall.

NIH Syndrome Strikes Again. Datamation 40, 11:90.

Military Standard: Defense System Software Development
(DOD-STD-2167A). Washington, D.C.: Department of
Defense.

Software Engineering Institute 7th Conference on Sofiware
Engineering Education. New York, New York: Springer-Verlag.

Software Forum—Corporate Market to Reach $51B in 94.
Newsbytes April 25, 1994.

47

References

Gries, David, and
Dorothy Marsh
1989

Hartmanis, Juris
1992

Hayes, Philip, and P. Szekely
1983

Humphrey, Watts
1989

Ince, Darrel
1988

Kouchakdjian, Ara,
Scott Green, and Victor Basili
1989

Larson, Barbara, and
Mark Stehlik
1990

Marco, David, and
Clement McGowan
1987

McCracken, Daniel, and
Michael Jackson
1982

Mcllroy, Douglas
1968

Merriam
1977

Merritt, Susan, Charles Bruen,
Philip East,

Darlene Grantham,

Charles Rice,

Viera Proulx, Gerry Segal,

and Carol Wolf

1993

The 19871988 Taulbee Survey. Communications of the ACM 32,
10:1217-1224.

Computing the Future. Communications of the ACM 35,
11:30—40.

Graceful Interaction through the Cousin Command Interface.
Intemational Journal of Man-Machine Studies 19, 3:285—-305.

Managing the Software Process.
Addison-Wesley.

Reading, Massachusetts:

Software Development: Fashioning the Baroque. New York, New
York: Oxford University Press.

“Evaluation of the Cleanroom Methodology in the Software
Engineering Laboratory.” In Proceedings of the Fourteenth
Annual Software Engineering Workshop. Greenbelt, Maryland.

Teacher’s Guide to Advanced Placement Courses in Computer
Science. New York, New York: Educational Testing Services.

SADT: Structured Analysis and Design Technique. New York, New
York: McGraw-Hill.

Life Cycle Concept Considered Harmful. Software Engineering
Notes 7,2:29-32.

“‘Mass-Produced” Software Components.” In Proceedings,
NATO Software Engineering Workshop.

Webster’s New Collegiate Dictionary. Springfield, Massachusetts:
G.«C. Merriam Company.

ACM Model High School Computer Science Curriculum.
Communications of the ACM 36, 5:87-90.

48

References

Mills, Harlan, Victor Basili,
John Gannon, and

Richard Hamlet

1989

O’ Connor, James,
Grady Campbell,
Catharine Mansour, and
Jerri Turner-Harris

1994

Paige, Emmett Jr.
1994

Pattis, Richard
1981

Prey, Jane, james Cohoon, and
Greg Fife
1994

Royce, W.
1970

Scheifter, Robert and
Jim Gettys
1986

Software Productivity
Consortium
1993

STARS
1992

Tucker, Allen, Bruce Barnes,
Robert Aiken, Keith Barker,
Kim Bruce, Thomas Cain,
Susan Condry, Gerald Engle,
Richard Epstein, Doris Lidtke,
Michael Mulder, Jean Rogers,
Eugene Spafford, and

Joe Turner

1991

Mathematical Principles for a First Course in Software
Engineering. IEEE Transactions on Software Engineering SE-15,
3:550-559.

Reuse in Command-and-Control Systems. IEEE Software 11,
5:70-79.

DoD Software Reuse Initiative. Report to Congress, March 1994,
Washington, D.C.: Department of Defense.

Karel the Robot: A Gentle Introduction to the Art of Programming
with Pascal. New York, New York: John Wiley and Sons.

“Software Engineering Beginning in the First Computer Science
Course.” In Proceedings, Software Engineering Insiitute 7th
Conference on Software Engineering Education. New York, New
York: Springer-Verlag (359—-374).

“Managing the Development of Large Software Systems:
Concepts and Techniques.” In Proceedings, WESCON.

The X Window System. ACM Transactions on Graphics 5,
2:79-109.

Reuse-Driven Software Processes Guidebook. SPC-92019-CMC,
version 02.00.03. Herndon, Virginia: Software Productivity
Consortium,

On the Road to Megaprogramming. Arlington, Virginia: STARS
Technology Center.

Computing Curricula 1991: Report of the ACM-IEEE-CS Joint
Curriculum Task Force. New York, New York: ACM Press.

49

References

Wartik, Steven, and
Maria Penedo
1986

Weinberg, Gerald
1971

FiLLIN: A Reusable Tool for Form-Oriented Software. /[EEE
Software 3, 2:61—-69.

The Psychology of Computer Programming. New York, New York:
Van Nostrand Reinhold.

